This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A092217 #16 Feb 16 2025 08:32:52 %S A092217 2,3,7,11,23,59,83,103,107,127,131,151,163,167,179,191,199,211,227, %T A092217 239,271,283,331,347,367,383,431,439,443,467,479,487,499,503,523,547, %U A092217 599,607,631,643,647,659,683,719,727,743,787,823,827,839,859,863,883,911 %N A092217 Primes that do not divide any Euler number. %C A092217 After computing the Euler numbers, finding the non-divisors is simple because the Euler numbers satisfy a Kummer congruence. See Wagstaff for details. The density of these primes is approximately 0.33. %H A092217 Amiram Eldar, <a href="/A092217/b092217.txt">Table of n, a(n) for n = 1..500</a> (terms 1..264 from T. D. Noe) %H A092217 Samuel S. Wagstaff, Jr., <a href="http://www.cerias.purdue.edu/homes/ssw/bernoulli/full.pdf">Prime divisors of the Bernoulli and Euler numbers</a>, in: Number Theory for the Millennium III, A K Peters, 2002, pp. 357-374. %H A092217 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/EulerNumber.html">Euler Number</a> %t A092217 ee=Table[Abs[EulerE[2i]], {i, 1000}]; t=Table[p=Prime[n]; cnt=0; Do[If[Mod[ee[[i]], p]==0, cnt++ ], {i, p}]; cnt, {n, PrimePi[1000]}]; Prime[Flatten[Position[t, 0]]] %Y A092217 Cf. A000364 (Euler numbers), A092218 (primes that divide some Euler number), A092219. %K A092217 nonn %O A092217 1,1 %A A092217 _T. D. Noe_, Feb 25 2004