A092241 Triangle read by rows: row n gives coefficients of (1+x+x^2)^n mod n.
0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 2, 0, 3, 0, 2, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 3, 2, 0, 0, 3, 0, 0, 2, 3, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 4, 0, 2, 0, 0, 0, 3, 0, 0, 0, 2, 0, 4, 0, 1, 1, 0, 0, 3, 0, 0, 6, 0, 0, 7, 0, 0, 6, 0, 0, 3, 0, 0, 1
Offset: 0
Examples
Triangle begins: [0] [0, 0, 0] [1, 0, 1, 0, 1] [1, 0, 0, 1, 0, 0, 1] [1, 0, 2, 0, 3, 0, 2, 0, 1] [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1] [1, 0, 3, 2, 0, 0, 3, 0, 0, 2, 3, 0, 1]
Crossrefs
Cf. A053200.
Programs
-
Maple
f := n -> seriestolist( series( expand( (1+x+x^2)^n ) mod n, x, 2*n+1));