cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092268 Total number of smallest parts in all partitions of n into odd parts.

This page as a plain text file.
%I A092268 #12 Jul 07 2019 03:20:39
%S A092268 1,2,4,5,8,12,15,20,29,36,46,61,74,95,122,145,180,224,268,328,399,474,
%T A092268 567,682,807,955,1136,1330,1564,1842,2140,2499,2914,3375,3917,4533,
%U A092268 5220,6014,6929,7942,9102,10430,11898,13582,15489,17600,19999,22706,25719
%N A092268 Total number of smallest parts in all partitions of n into odd parts.
%H A092268 Vaclav Kotesovec, <a href="/A092268/b092268.txt">Table of n, a(n) for n = 1..2500</a>
%F A092268 G.f.: Sum((x^(2*n-1)/(1-x^(2*n-1)))/Product((1-x^(2*k-1)), k=n..infinity), n=1..infinity).
%F A092268 a(n) ~ 3^(1/4) * exp(Pi*sqrt(n/3)) / (2*Pi*n^(1/4)). - _Vaclav Kotesovec_, Jul 07 2019
%e A092268 Partitions of 6 into odd parts are: [1,1,1,1,1,1], [1,1,1,3], [3,3], [1,5]; thus a(6)=6+3+2+1=12.
%t A092268 nmax = 50; Rest[CoefficientList[Series[Sum[(x^(2*n - 1)/(1 - x^(2*n - 1))) / Product[(1 - x^(2*k - 1)), {k, n, nmax}], {n, 1, nmax}], {x, 0, nmax}], x]] (* _Vaclav Kotesovec_, Jul 06 2019 *)
%Y A092268 Cf. A092314, A092322, A092269, A092309, A092321, A092313, A092310, A092311.
%Y A092268 Cf. A067588.
%K A092268 easy,nonn
%O A092268 1,2
%A A092268 _Vladeta Jovovic_, Feb 16 2004
%E A092268 More terms from Pab Ter (pabrlos(AT)yahoo.com), May 25 2004