This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A092276 #47 Feb 18 2025 08:58:20 %S A092276 1,2,1,7,4,1,30,18,6,1,143,88,33,8,1,728,455,182,52,10,1,3876,2448, %T A092276 1020,320,75,12,1,21318,13566,5814,1938,510,102,14,1,120175,76912, %U A092276 33649,11704,3325,760,133,16,1,690690,444015,197340,70840,21252,5313,1078,168,18,1 %N A092276 Triangle read by rows: T(n,k) is the number of noncrossing trees with root degree equal to k. %C A092276 With offset 0, Riordan array (f(x), x*f(x)) where f(x) is the g.f. of A006013. - _Philippe Deléham_, Jan 23 2010 %H A092276 Andrew Howroyd, <a href="/A092276/b092276.txt">Table of n, a(n) for n = 1..1275</a> %H A092276 Peter Bala, <a href="/A033184/a033184.pdf">Factorisations of some Riordan arrays as infinite products</a> %H A092276 Paul Barry, <a href="https://arxiv.org/abs/2001.08799">Characterizations of the Borel triangle and Borel polynomials</a>, arXiv:2001.08799 [math.CO], 2020. %H A092276 Paul Barry, <a href="https://arxiv.org/abs/2011.13985">The second production matrix of a Riordan array</a>, arXiv:2011.13985 [math.CO], 2020. %H A092276 P. Flajolet and M. Noy, <a href="http://dx.doi.org/10.1016/S0012-365X(98)00372-0">Analytic combinatorics of non-crossing configurations</a>, Discrete Math., 204, 203-229, 1999. %H A092276 M. Noy, <a href="http://dx.doi.org/10.1016/S0012-365X(97)00121-0">Enumeration of noncrossing trees on a circle</a>, Discrete Math., 180, 301-313, 1998. %F A092276 T(n, k) = 2*k*binomial(3n-k, n-k)/(3n-k). %F A092276 G.f.: 1/(1-t*z*g^2), where g := 2*sin(arcsin(3*sqrt(3*z)/2)/3)/sqrt(3*z) is the g.f. of the sequence A001764. %F A092276 T(n, k) = Sum_{j>=1} j*T(n-1, k-2+j). - _Philippe Deléham_, Sep 14 2005 %F A092276 With offset 0, T(n,k) = ((n+1)/(k+1))*binomial(3n-k+1, n-k). - _Philippe Deléham_, Jan 23 2010 %F A092276 From _Gary W. Adamson_, Jul 07 2011: (Start) %F A092276 Let M = the production matrix %F A092276 2, 1; %F A092276 3, 2, 1; %F A092276 4, 3, 2, 1; %F A092276 5, 4, 3, 2, 1; %F A092276 ... %F A092276 Top row of M^(n-1) generates n-th row terms of triangle A092276. Leftmost terms of each row = A006013 starting (1, 2, 7, 30, 143, ...). (End) %F A092276 Working with an offset of 0, the inverse array is the Riordan array ((1 - x)^2, x*(1 - x)^2). - _Peter Bala_, Apr 30 2024 %e A092276 Triangle begins: %e A092276 1; %e A092276 2, 1; %e A092276 7, 4, 1; %e A092276 30, 18, 6, 1; %e A092276 143, 88, 33, 8, 1; %e A092276 728, 455, 182, 52, 10, 1; %e A092276 3876, 2448, 1020, 320, 75, 12, 1; %e A092276 ... %e A092276 Top row of M^3 = (30, 18, 6, 1) %e A092276 From _Peter Bala_, Nov 25 2024: (Start) %e A092276 The transposed array as an infinite product of upper triangular arrays: %e A092276 /1 2 3 4 5 ... \/1 \/1 \ /1 2 7 30 143 ...\ %e A092276 | 1 2 3 4 ... || 1 2 3 4 ...|| 1 | | 1 4 18 88 ...| %e A092276 | 1 2 3 ... || 1 2 3 ...|| 1 2 3 4 ...| ... = | 1 6 33 ...| %e A092276 | 1 2 ... || 1 2 ...|| 1 2 3 ...| | 1 8 ...| %e A092276 | 1 ... || 1 ...|| 1 2 ...| | 1 ...| %e A092276 | ... || ...|| ...| | ...| %e A092276 Cf. A078812. (End) %p A092276 T := proc(n,k) if k=n then 1 else 2*k*binomial(3*n-k,n-k)/(3*n-k) fi end: seq(seq(T(n,k),k=1..n),n=1..11); %t A092276 t[n_, n_] = 1; t[n_, k_] := 2*k*Binomial[3*n-k, n-k]/(3*n-k); Table[t[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Nov 22 2012, after Maple *) %o A092276 (PARI) T(n, k) = 2*k*binomial(3*n-k, n-k)/(3*n-k); \\ _Andrew Howroyd_, Nov 06 2017 %Y A092276 Row sums give sequence A001764. %Y A092276 Columns 1..5 are A006013, A006629, A006630, A006631, A233657. %K A092276 nonn,tabl %O A092276 1,2 %A A092276 _Emeric Deutsch_, Feb 24 2004