cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092288 Triangle read by rows: T(n,k) = count of parts k in all plane partitions of n.

Original entry on oeis.org

1, 4, 1, 11, 2, 1, 28, 7, 2, 1, 62, 15, 5, 2, 1, 137, 38, 13, 5, 2, 1, 278, 76, 28, 11, 5, 2, 1, 561, 164, 60, 26, 11, 5, 2, 1, 1080, 316, 124, 52, 24, 11, 5, 2, 1, 2051, 623, 244, 108, 50, 24, 11, 5, 2, 1, 3778, 1156, 469, 208, 100, 48, 24, 11, 5, 2, 1, 6885, 2160, 886, 404, 194, 98, 48, 24, 11, 5, 2, 1
Offset: 1

Views

Author

Wouter Meeussen, Feb 01 2004

Keywords

Comments

For large n the rows end in A091360 = partial sums of A000219 (count of plane partitions).

Examples

			Triangle begins:
    1;
    4,  1;
   11,  2,  1;
   28,  7,  2,  1;
   62, 15,  5,  2,  1;
  137, 38, 13,  5,  2,  1;
  ...
		

Crossrefs

Column k=1 gives A090539.
Row sums give A319648.
T(2n+1,n+1) gives A091360.

Programs

  • Mathematica
    Table[Length /@ Split[Sort[Flatten[planepartitions[k]]]], {k, 12}]
  • PARI
    A092288_row(n, c=vector(n), m, k)={for(i=1, #n=PlanePartitions(n), for(j=1,#m=n[i], for(i=1,#k=m[j], c[k[i]]++))); c} \\ See A091298 for PlanePartitions(). See below for more efficient code.
    M92288=[]; A092288(n,k,L=0)={n>1||return(if(L,[n,n==k],n==k)); if(#L&& #L<3, my(j=setsearch(M92288,[[n,k,L],[]],1)); j<=#M92288&& M92288[j][1]==[n,k,L]&& return(M92288[j][2])); my(c(p)=sum(i=1,#p,p[i]==k),S=[0,0],t); for(m=1,n,my(P=if(L,select(p->vecmin(L-Vecrev(p,#L))>=0, partitions(m,L[1],#L)), partitions(m))); if(mA092288(n-m,k,Vecrev(P[i])); S+=[t[1], t[1]*c(P[i])+t[2]], S+=[#P,vecsum(apply(c,P))])); if(L, #L<3&& M92288= setunion(M92288,[[[n,k,L],S]]);S,S[2])} \\ M. F. Hasler, Sep 26 2018