This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A092299 #11 Jul 07 2025 03:32:15 %S A092299 12,2592,50388480,80225312993280,10358730921842550374400, %T A092299 108354149159204252828272715366400, %U A092299 91807063616969429053277006948134413139968000,6300752103463414524173850924959140409591369032708128768000,35026261744325078751960598643637064012678383486922588643915999981076480000 %N A092299 a(n) = 4*3^(n^2+2n+1)*Product_{j=1..n} (9^j-1). %C A092299 The order of the p-Clifford group for an odd prime p is a*p^(n^2+2n+1)*Product_{j=1..n} (p^(2*j)-1), where a = gcd(p+1,4). %H A092299 G. Nebe, E. M. Rains and N. J. A. Sloane, <a href="http://neilsloane.com/doc/cliff2.html">Self-Dual Codes and Invariant Theory</a>, Springer, Berlin, 2006. %F A092299 From _Amiram Eldar_, Jul 06 2025: (Start) %F A092299 a(n) = 4 * A092301(n). %F A092299 a(n) ~ c * 3^(2*n^2+3*n+1), where c = 4 * A132037. (End) %t A092299 a[n_] := 4*3^(n^2+2*n+1) * Product[9^j - 1, {j, 1, n}]; Array[a, 10, 0] (* _Amiram Eldar_, Jul 06 2025 *) %Y A092299 Cf. A001309, A003956, A132037. %Y A092299 Cf. A092299 and A092301 (p=3), A092300 and A089989 (p=5), A090768 and A090769 (p=7), A090770 (p=2, although this is the wrong formula in that case). %K A092299 nonn %O A092299 0,1 %A A092299 _N. J. A. Sloane_, Feb 10 2004