cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092301 a(n) = 3^(n^2+2n+1)*Product_{j=1..n} (9^j-1).

This page as a plain text file.
%I A092301 #12 Jul 07 2025 03:32:22
%S A092301 3,648,12597120,20056328248320,2589682730460637593600,
%T A092301 27088537289801063207068178841600,
%U A092301 22951765904242357263319251737033603284992000,1575188025865853631043462731239785102397842258177032192000,8756565436081269687990149660909266003169595871730647160978999995269120000
%N A092301 a(n) = 3^(n^2+2n+1)*Product_{j=1..n} (9^j-1).
%C A092301 The order of the p-Clifford group for an odd prime p is a*p^(n^2+2n+1)*Product_{j=1..n} (p^(2*j)-1), where a = gcd(p+1,4).
%H A092301 G. Nebe, E. M. Rains and N. J. A. Sloane, <a href="http://neilsloane.com/doc/cliff2.html">Self-Dual Codes and Invariant Theory</a>, Springer, Berlin, 2006.
%F A092301 From _Amiram Eldar_, Jul 07 2025: (Start)
%F A092301 a(n) = A092299(n) / 4.
%F A092301 a(n) ~ c * 3^(2*n^2+3*n+1), where c = A132037. (End)
%t A092301 Table[3^(n^2+2n+1) Product[9^j-1,{j,n}],{n,0,10}] (* _Harvey P. Dale_, Jun 23 2013 *)
%Y A092301 Cf. A001309, A003956, A132037.
%Y A092301 Cf. A092299 and A092301 (p=3), A092300 and A089989 (p=5), A090768 and A090769 (p=7), A090770 (p=2, although this is the wrong formula in that case).
%K A092301 nonn
%O A092301 0,1
%A A092301 _N. J. A. Sloane_, Feb 10 2004