cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092309 Sum of smallest parts (counted with multiplicity) of all partitions of n.

This page as a plain text file.
%I A092309 #19 Jul 06 2019 04:42:57
%S A092309 1,4,7,15,19,39,46,80,106,160,201,318,390,554,729,998,1262,1727,2168,
%T A092309 2894,3670,4749,5963,7737,9635,12232,15257,19206,23727,29723,36509,
%U A092309 45296,55512,68292,83298,102079,123805,150697,182254,220790,265766
%N A092309 Sum of smallest parts (counted with multiplicity) of all partitions of n.
%H A092309 Alois P. Heinz, <a href="/A092309/b092309.txt">Table of n, a(n) for n = 1..9000</a>
%F A092309 G.f.: Sum(n*x^n/(1-x^n)*Product(1/(1-x^k), k = n .. infinity), n = 1 .. infinity).
%F A092309 a(n) ~ sqrt(2) * exp(Pi*sqrt(2*n/3)) / (4*Pi*sqrt(n)). - _Vaclav Kotesovec_, Jul 06 2019
%e A092309 Partitions of 4 are: [1,1,1,1], [1,1,2], [2,2], [1,3], [4]; thus a(4)=4*1+2*1+2*2+1*1+1*4=15.
%p A092309 b:= proc(n, i) option remember; `if`(irem(n, i)=0, n, 0)
%p A092309        +`if`(i>1, add(b(n-i*j, i-1), j=0..(n-1)/i), 0)
%p A092309     end:
%p A092309 a:= n-> b(n$2):
%p A092309 seq(a(n), n=1..50);  # _Alois P. Heinz_, Feb 04 2016
%t A092309 ss[n_]:=Module[{m=Min[n]},Select[n,#==m&]]; Table[Total[Flatten[ss/@ IntegerPartitions[n]]],{n,50}] (* _Harvey P. Dale_, Dec 16 2013 *)
%t A092309 b[n_, i_] := b[n, i] = If[Mod[n, i] == 0, n, 0] + If[i > 1, Sum[b[n - i*j, i - 1], {j, 0, (n - 1)/i}], 0]; a[n_] := b[n, n]; Table[a[n], {n, 1, 50}] (* _Jean-François Alcover_, Aug 29 2016, after _Alois P. Heinz_ *)
%Y A092309 Cf. A092314, A092322, A092269, A092321, A092313, A092310, A092311, A092268.
%Y A092309 Cf. A046746.
%K A092309 easy,nonn
%O A092309 1,2
%A A092309 _Vladeta Jovovic_, Feb 16 2004
%E A092309 More terms from Pab Ter (pabrlos(AT)yahoo.com), May 25 2004