This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A092311 #14 Apr 24 2023 12:24:17 %S A092311 1,2,4,5,7,10,12,14,19,23,26,33,38,44,56,63,71,88,99,114,138,155,176, %T A092311 208,237,269,314,357,402,468,529,594,686,772,873,999,1119,1260,1431, %U A092311 1608,1804,2039,2284,2554,2884,3219,3590,4032,4493,5011,5603,6231,6928 %N A092311 Total number of largest parts in all partitions of n into odd parts. %H A092311 Vaclav Kotesovec, <a href="/A092311/b092311.txt">Table of n, a(n) for n = 1..2500</a> %F A092311 G.f.: Sum((x^(2*n-1)/(1-x^(2*n-1)))/Product((1-x^(2*k-1)), k=1..n), n=1..infinity). %F A092311 a(n) ~ exp(Pi*sqrt(n/3)) / (4 * 3^(1/4) * n^(3/4)). - _Vaclav Kotesovec_, Jul 07 2019 %e A092311 Partitions of 6 into odd parts are: [1,1,1,1,1,1], [1,1,1,3], [3,3], [1,5]; thus a(6)=6+1+2+1=10. %t A092311 nmax = 50; Rest[CoefficientList[Series[Sum[(x^(2*n - 1)/(1 - x^(2*n - 1))) / Product[(1 - x^(2*k - 1)), {k, 1, n}], {n, 1, nmax}], {x, 0, nmax}], x]] (* _Vaclav Kotesovec_, Jul 06 2019 *) %t A092311 lpp[k_]:=Module[{c=Max[k]},Count[k,c]]; Table[Total[lpp/@Select[IntegerPartitions[ n],AllTrue[ #,OddQ]&]],{n, 60}] (* _Harvey P. Dale_, Apr 24 2023 *) %Y A092311 Cf. A092314, A092322, A092269, A092309, A092321, A092313, A092310, A092268. %K A092311 easy,nonn %O A092311 1,2 %A A092311 _Vladeta Jovovic_, Feb 16 2004 %E A092311 More terms from Pab Ter (pabrlos(AT)yahoo.com), May 25 2004