cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092321 Sum of largest parts (counted with multiplicity) of all partitions of n.

This page as a plain text file.
%I A092321 #30 Feb 27 2020 03:01:06
%S A092321 0,1,4,8,17,26,49,69,115,164,249,343,513,686,974,1314,1806,2382,3232,
%T A092321 4208,5597,7244,9456,12118,15687,19899,25422,32079,40589,50796,63805,
%U A092321 79303,98817,122179,151145,185820,228598,279476,341807,416051,506205,613244,742720
%N A092321 Sum of largest parts (counted with multiplicity) of all partitions of n.
%H A092321 Vaclav Kotesovec, <a href="/A092321/b092321.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..1000 from Alois P. Heinz)
%H A092321 Margaret Archibald, A. Blecher, C. Brennan, A. Knopfmacher and T. Mansour, <a href="https://ajc.maths.uq.edu.au/pdf/66/ajc_v66_p104.pdf">Partitions according to multiplicities and part sizes</a>, Australasian Journal of Combinatorics, Volume 66(1) (2016), Pages 104-119.
%H A092321 Ljuben Mutafchiev, <a href="https://arxiv.org/abs/1712.03233">On the Largest Part Size and Its Multiplicity of a Random Integer Partition</a>, arXiv:1712.03233 [math.PR], 2017.
%F A092321 G.f.: Sum_{n>=1} (n*x^n/(1-x^n))*Product_{k=1..n} 1/(1-x^k).
%e A092321 Partitions of 4 are [1,1,1,1], [1,1,2], [2,2], [1,3], [4]; thus a(4) = 4*1 + 1*2 + 2*2 + 1*3 + 1*4 = 17.
%p A092321 b:= proc(n, i, t) option remember; `if`(n=0, [1, 0],
%p A092321       `if`(i<1, [0$2], b(n, i-1, t) +add((l->`if`(t, l,
%p A092321        l+[0, l[1]*i*j]))(b(n-i*j, i-1, true)), j=1..n/i)))
%p A092321     end:
%p A092321 a:= n-> b(n$2, false)[2]:
%p A092321 seq(a(n), n=0..50);  # _Alois P. Heinz_, Jan 29 2014
%t A092321 f[n_] := Block[{c = 2n, k = 2, p = IntegerPartitions[n]}, m = Max @@@ p; l = Length[p]; While[k < l, c = c + m[[k]]*Count[p[[k]], m[[k]]]; k++ ]; If[n == 1, 1, c]]; Table[ f[n], {n, 41}] (* _Robert G. Wilson v_, Feb 18 2004, updated by _Jean-François Alcover_, Jan 29 2014 *)
%t A092321 nmax = 50; CoefficientList[Series[Sum[n*x^n/(1-x^n) * Product[1/(1 - x^k), {k, 1, n}], {n, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Jul 06 2019 *)
%t A092321 Join[{0},Table[Total[Flatten[First[Split[#]]&/@IntegerPartitions[n]]],{n,50}]] (* _Harvey P. Dale_, Oct 29 2019 *)
%Y A092321 Cf. A006128, A092314, A092322, A092269, A092309, A092313, A092310, A092311, A092268.
%K A092321 easy,nonn
%O A092321 0,3
%A A092321 _Vladeta Jovovic_, Feb 16 2004
%E A092321 More terms from _Robert G. Wilson v_, Feb 18 2004