A092331 For S a string of numbers, let F(S) = the sum of those numbers. Let a(1)=1. For n>1, a(n) is the largest k such that the string a(1)a(2)...a(n-1) can be written in the form [x][y_1][y_2]...[y_k], where each y_i is positive (but not necessarily all the same) length and F(y_i)=F(y_j) for all i,j<=k.
1, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 3, 4, 1, 3, 2, 2, 3, 3, 3, 3, 4, 2, 3, 3, 4, 2, 5, 2, 2, 4, 3, 2, 5, 2, 3, 3, 2, 4, 2, 3, 3, 2, 3, 3, 3, 3, 4, 2, 3, 3, 4, 4, 4, 3, 3, 4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 3, 4, 3, 2, 3, 3, 2, 3, 4, 4, 3, 3, 5, 3, 3, 3, 4, 5, 3, 3, 3, 4, 3, 3, 5, 3, 6, 3, 3, 4, 6, 2
Offset: 1
Keywords
Examples
From _Rémy Sigrist_, Feb 08 2023: (Start) The first terms, alongside an appropriate partition of prior terms, are: n a(n) Prior terms -- ---- ----------------- 1 1 N/A 2 1 1 3 2 1|1 4 2 1 1|2 5 3 1 1|2|2 6 1 1 1 2 2 3 7 2 1 1|2 2|3 1 8 2 1 1 2 2|3 1 2 9 3 1 1|2 2|3 1|2 2 10 2 1|1 2 2 3|1 2 2 3 (End)
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..10000
- F. J. van de Bult, D. C. Gijswijt, J. P. Linderman, N. J. A. Sloane and Allan Wilks, A Slow-Growing Sequence Defined by an Unusual Recurrence, J. Integer Sequences, Vol. 10 (2007), #07.1.2.
- F. J. van de Bult, D. C. Gijswijt, J. P. Linderman, N. J. A. Sloane and Allan Wilks, A Slow-Growing Sequence Defined by an Unusual Recurrence [pdf, ps].
- Rémy Sigrist, C program
- Index entries for sequences related to Gijswijt's sequence
Programs
-
C
See Links section.
Comments