A092332 For S a string of numbers, let F(S) = the product of those numbers. Let a(1)=1. For n>1, a(n) is the greatest k such that a(1)a(2)...a(n-1) can be written in the form [x][y_1][y_2]...[y_k] where each y_i is of positive (but not necessarily all the same) length and F(y_i)=F(y_j) for all i,j<=k.
1, 1, 2, 1, 1, 2, 2, 3, 1, 1, 2, 1, 1, 2, 2, 3, 2, 2, 2, 3, 3, 2, 2, 4, 2, 2, 3, 2, 1, 1, 2, 2, 3, 3, 2, 2, 3, 3, 2, 4, 2, 2, 2, 3, 2, 3, 3, 2, 3, 2, 4, 4, 3, 2, 2, 2, 3, 3, 2, 2, 2, 3, 3, 2, 2, 2, 3, 3, 3, 3, 4, 4, 2, 3, 2, 2, 2, 3, 3, 3, 3, 4, 2, 2, 3, 4, 3, 3, 2, 2, 4, 3, 5, 1, 1, 2, 1, 1, 2, 2, 3, 1, 1, 2, 1
Offset: 1
Keywords
Links
- F. J. van de Bult, D. C. Gijswijt, J. P. Linderman, N. J. A. Sloane and Allan Wilks, A Slow-Growing Sequence Defined by an Unusual Recurrence, J. Integer Sequences, Vol. 10 (2007), #07.1.2.
- F. J. van de Bult, D. C. Gijswijt, J. P. Linderman, N. J. A. Sloane and Allan Wilks, A Slow-Growing Sequence Defined by an Unusual Recurrence [pdf, ps].
- Index entries for sequences related to Gijswijt's sequence
Comments