A092334 For S a finite string of numbers, let M(S) denote the maximal number among them. Let a(1)=1. For n>1, a(n) is the greatest k such that the string a(1)a(2)...a(n-1) can be written in the form [x][y_1][y_2]...[y_k] where each y_i is of positive (but not necessarily equal) length and M(y_i)=M(y_j) for all i,j.
1, 1, 2, 1, 1, 2, 2, 3, 1, 1, 2, 1, 1, 2, 2, 3, 2, 2, 2, 3, 3, 4, 1, 1, 2, 1, 1, 2, 2, 3, 1, 1, 2, 1, 1, 2, 2, 3, 2, 2, 2, 3, 3, 4, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 3, 4, 3, 3, 3, 3, 4, 4, 5, 1, 1, 2, 1, 1, 2, 2, 3, 1, 1, 2, 1, 1, 2, 2, 3, 2, 2, 2, 3, 3, 4, 1, 1, 2, 1, 1, 2, 2, 3, 1, 1, 2, 1, 1, 2, 2, 3, 2, 2
Offset: 1
Keywords
Links
- F. J. van de Bult, D. C. Gijswijt, J. P. Linderman, N. J. A. Sloane and Allan Wilks, A Slow-Growing Sequence Defined by an Unusual Recurrence, J. Integer Sequences, Vol. 10 (2007), #07.1.2.
- F. J. van de Bult, D. C. Gijswijt, J. P. Linderman, N. J. A. Sloane and Allan Wilks, A Slow-Growing Sequence Defined by an Unusual Recurrence [pdf, ps].
- Index entries for sequences related to Gijswijt's sequence
Comments