This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A092340 #18 Apr 13 2021 19:10:04 %S A092340 7,17,107,137,197,227,347,617,827,857,1277,1427,1487,1607,1667,1697, %T A092340 1787,1877,1997,2027,2087,2237,2267,2657,2687,2707,3167,3257,3467, %U A092340 3527,3557,3767,3917,4127,4157,4217,4337,4517,4547,4637,4787,4967,5417,5477 %N A092340 Prime numbers n such that n^2+2*n divides (Fibonacci(n^2) + Fibonacci(2*n)). %C A092340 First disagrees with A181605 at n=26: this sequence contains 2707, but A181605 doesn't. Is this a supersequence of A181605? - _Nathaniel Johnston_, Jun 25 2011 %C A092340 See link for proof of this. - _Robert Israel_, Apr 13 2021 %H A092340 Giovanni Resta, <a href="/A092340/b092340.txt">Table of n, a(n) for n = 1..10000</a> (first 182 terms from Robert G. Wilson v) %H A092340 Robert Israel, <a href="/A092340/a092340.pdf">Proof that A181605 is a subsequence of A092340</a> %p A092340 filter:= proc(n) %p A092340 local M,A; %p A092340 uses LinearAlgebra:-Modular; %p A092340 if not isprime(n) then return false fi; %p A092340 M:= Matrix(2,2,<<0,1>|<1,1>>,datatype=integer); %p A092340 A:= MatrixPower(n,M,n^2) + MatrixPower(n,M,2*n); %p A092340 if A[1,2] mod n <> 0 then return false fi; %p A092340 A:= MatrixPower(n+2,M,n^2) + MatrixPower(n+2,M,2*n); %p A092340 A[1,2] mod (n+2) = 0 %p A092340 end proc: %p A092340 select(filter, [seq(i,i=3..10000,2)]); # _Robert Israel_, Apr 13 2021 %t A092340 fQ[n_] := Mod[ Fibonacci[n^2] + Fibonacci[2 n], n^2 + 2 n] == 0; Select[ Prime@ Range@ 744, fQ] (* _Robert G. Wilson v_, Nov 07 2010 *) %o A092340 (PARI) forprime (i=1,2000,if(Mod(fibonacci(i^2)+fibonacci(2*i),i^2+2*i)==0,print1(i,","))) %Y A092340 Cf. A000045. %Y A092340 Cf. A181605. - _Robert G. Wilson v_, Nov 07 2010 %K A092340 nonn %O A092340 1,1 %A A092340 Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 18 2004 %E A092340 Offset changed from 0 to 1 by _Robert G. Wilson v_, Nov 07 2010 %E A092340 More terms from _Robert G. Wilson v_, Nov 07 2010