This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A092379 #32 Nov 17 2019 02:26:23 %S A092379 1,1,209295261,810375650,130981854694547781,1866712378783655407, %T A092379 380792413068640291929758918,19226936188283951521093833164, %U A092379 6245082121880029165837197634771465822,1084566535537396419423204907970597478243 %N A092379 The O(1) loop model on the square lattice is defined as follows: At every vertex the loop turns to the left or to the right with equal probability, unless the vertex has been visited before, in which case the loop leaves the vertex via the unused edge. Every vertex is visited twice. The probability that a face of the lattice on an n X infinity cylinder is surrounded by seven loops is conjectured to be given by a(n)/A_{HT}(n)^2, where A_{HT}(n) is the number of n X n half turn symmetric alternating sign matrices. %H A092379 G. C. Greubel, <a href="/A092379/b092379.txt">Table of n, a(n) for n = 14..60</a> %H A092379 Saibal Mitra and Bernard Nienhuis, <a href="https://dmtcs.episciences.org/3320">Osculating Random Walks on Cylinders</a>, in Discrete Random Walks, DRW'03, Cyril Banderier and Christian Krattenthaler (eds.), Discrete Mathematics and Theoretical Computer Science Proceedings AC, (2003) pp. 259-264. %F A092379 Even n: Q(n, m) = Sum_{r=0..(n-2*m)/4} (-1)^r * ((m+2*r)/(m+r)) * binomial(m+r, r) * C_{n/2 - m - 2*r}(n). %F A092379 Odd n: Q(n, m) = Sum_{r=0..(n-2*m-1)/4)} (-1)^r * binomial(m+r,r) * ( C_{(n-1)/2 - m - 2*r}(n) - C_{(n-1)/2 - m - 2*r - 1}(n) ), where the c_{k}(n) are the absolute values of the coefficients of the characteristic polynomial of the n X n Pascal matrix P_{i, j} = binomial(i+j-2, i-1). The sequence is given by Q(n, 7). %t A092379 M[n_, k_]:= Table[Binomial[i+j-2, i-1], {i, n}, {j, k}]; %t A092379 c[k_, n_]:= Coefficient[CharacteristicPolynomial[M[n, n], x], x, k]//Abs; %t A092379 Q[n_?EvenQ, m_]:= Sum[(-1)^r*((m+2*r)/(m+r))*Binomial[m +r, r]*c[n/2 -m-2*r, n], {r, 0, (n-2*m)/4}]; %t A092379 Q[n_?OddQ, m_]:= Sum[(-1)^r*Binomial[m+r, r]*(c[(n-1)/2 -m-2*r, n] - c[(n-1)/2 -m-2*r-1, n]), {r, 0, (n-2*m-1)/4}]; %t A092379 Table[Q[n, 7], {n, 14, 30}] (* _Jean-François Alcover_, Sep 11 2012; modified by _G. C. Greubel_, Nov 15 2019 *) %Y A092379 Cf. A045912, A092372, A092373, A092374, A092375, A092376, A092377, A092378, A092380, A092381, A092382. %K A092379 nonn %O A092379 14,3 %A A092379 Saibal Mitra (smitra(AT)zonnet.nl), Mar 20 2004 %E A092379 More terms added and edited by _G. C. Greubel_, Nov 15 2019