This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A092393 #26 Nov 02 2023 20:10:58 %S A092393 1,2,6,3,12,15,4,20,36,28,5,30,70,80,45,6,42,120,180,150,66,7,56,189, %T A092393 350,385,252,91,8,72,280,616,840,728,392,120,9,90,396,1008,1638,1764, %U A092393 1260,576,153,10,110,540,1560,2940,3780,3360,2040,810,190,11,132,715 %N A092393 Triangle read by rows: T(n,k) = (n+k)*binomial(n,k) (for k=0..n-1). %H A092393 Paolo Xausa, <a href="/A092393/b092393.txt">Table of n, a(n) for n = 1..11325</a> (rows 1..150 of the triangle, flattened) %F A092393 First column = positive integers; %F A092393 second column = A002378; %F A092393 third column = A077414; %F A092393 main diagonal (i.e., T(n,n) = (n+n)*binomial(n,n) = 2n, which is not included in this sequence) = even integers; %F A092393 second diagonal = A000384. %F A092393 Row sums = 1, 8, 30, 88, 230,... = A167667(n)-2n. - _R. J. Mathar_, Nov 02 2023 %e A092393 Triangle starts: %e A092393 1; %e A092393 2, 6; %e A092393 3, 12, 15; %e A092393 4, 20, 36, 28; %e A092393 5, 30, 70, 80, 45; %e A092393 6, 42, 120, 180, 150, 66; %e A092393 ... %p A092393 A092393 := proc(n,k) %p A092393 (n+k)*binomial(n,k) ; %p A092393 end proc: %p A092393 seq(seq( A092393(n,k),k=0..n-1),n=1..12) ; # _R. J. Mathar_, Nov 02 2023 %t A092393 A092393row[n_]:=Table[(n+k)Binomial[n,k],{k,0,n-1}];Array[A092393row,10] (* _Paolo Xausa_, Nov 02 2023 *) %o A092393 (PARI) T(n,k)=binomial(n,k)*(n+k) %Y A092393 Cf. A029635. %K A092393 nonn,tabl %O A092393 1,2 %A A092393 _Benoit Cloitre_, Mar 21 2004