cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092394 Largest gcd of two distinct numbers on row n of Pascal's triangle.

This page as a plain text file.
%I A092394 #15 Aug 26 2024 09:53:31
%S A092394 1,1,2,5,5,7,28,42,42,165,132,429,1001,1001,1430,6188,4862,25194,
%T A092394 41990,58786,58786,245157,653752,742900,1931540,4345965,2674440,
%U A092394 17298645,9694845,29464725,94287120,129644790,927983760,811985790,477638700
%N A092394 Largest gcd of two distinct numbers on row n of Pascal's triangle.
%H A092394 Michael De Vlieger, <a href="/A092394/b092394.txt">Table of n, a(n) for n = 2..1000</a>
%e A092394 For n = 6, the numbers on the row are 1, 6, 15 and 20 and the gcd's of pairs of these are 1, 3, 2 and 5. So a(6) = 5.
%t A092394 Max /@ (GCD[#1, #2] & @@@ Subsets[#, {2}] & /@ Table[Binomial[n, k], {n, 2, 36}, {k, 0, Floor[n/2]}]) (* _Michael De Vlieger_, Feb 26 2016 *)
%o A092394 (PARI) mg(n) = {my(m = 0, v = vecsort(vector(n+1, k, k--; binomial(n,k)),,8));for (k=2, #v, for (j=1, k-1, m = max(m, gcd(v[k], v[j])););); m;} \\ _Michel Marcus_, Feb 26 2016
%Y A092394 Cf. A007318, A091963.
%K A092394 easy,nonn
%O A092394 2,3
%A A092394 _David Wasserman_, Mar 21 2004