cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092412 Fixed point of the morphism 0->11, 1->12, 2->13, 3->10, starting from a(1) = 1.

This page as a plain text file.
%I A092412 #37 Feb 25 2025 11:22:26
%S A092412 1,2,1,3,1,2,1,0,1,2,1,3,1,2,1,1,1,2,1,3,1,2,1,0,1,2,1,3,1,2,1,2,1,2,
%T A092412 1,3,1,2,1,0,1,2,1,3,1,2,1,1,1,2,1,3,1,2,1,0,1,2,1,3,1,2,1,3,1,2,1,3,
%U A092412 1,2,1,0,1,2,1,3,1,2,1,1,1,2,1,3,1,2,1,0,1,2,1,3,1,2,1,2,1,2,1,3,1,2,1,0
%N A092412 Fixed point of the morphism 0->11, 1->12, 2->13, 3->10, starting from a(1) = 1.
%H A092412 Paolo Xausa, <a href="/A092412/b092412.txt">Table of n, a(n) for n = 1..16384</a> (terms 1..1024 from Andrew Howroyd)
%H A092412 <a href="/index/Fi#FIXEDPOINTS">Index entries for sequences that are fixed points of mappings</a>.
%F A092412 a(n) = A001511(n) mod 4.
%F A092412 a(2n+1) = 1; a(2n) = a(n) + 1 mod 4.
%F A092412 a(n) == A035263(n) (mod 2); a(n) == A033485(n) (mod 2).
%F A092412 Multiplicative with a(2^e) = (1 + e) mod 4, a(p^e) = 1 for odd prime p. - _Andrew Howroyd_, Aug 06 2018
%F A092412 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 22/15. - _Amiram Eldar_, Nov 29 2022
%F A092412 Dirichlet g.f.: zeta(s)*(3*2^s+2^(2*s+1)+2^(3*s))/(1+2^s+4^s+8^s). - _Amiram Eldar_, Jan 04 2023
%t A092412 Nest[ Function[ l, {Flatten[(l /. {0 -> {1, 1}, 1 -> {1, 2}, 2 -> {1, 3}, 3 -> {1, 0}})] }], {0}, 7] (* _Robert G. Wilson v_, Mar 04 2005 *)
%t A092412 SubstitutionSystem[{0 -> {1, 1}, 1 -> {1, 2}, 2 -> {1, 3}, 3 -> {1, 0}}, {1}, 7] // Last (* _Jean-François Alcover_, Sep 20 2019 *)
%t A092412 Mod[IntegerExponent[Range[100], 2] + 1, 4] (* _Paolo Xausa_, Feb 25 2025 *)
%o A092412 (PARI) a(n)=(1 + valuation(n, 2)) %4; \\ _Andrew Howroyd_, Aug 06 2018
%o A092412 (Python)
%o A092412 def A092412(n): return (n&-n).bit_length()&3 # _Chai Wah Wu_, Jul 13 2022
%Y A092412 Cf. A001511, A033485, A035263, A346070 (same with values 3,0,1,2).
%K A092412 easy,mult,nonn
%O A092412 1,2
%A A092412 _Philippe Deléham_, Mar 22 2004