This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A092441 #17 Mar 13 2024 10:27:06 %S A092441 1,10,65,346,1637,7218,30529,126034,513125,2072698,8335505,33439914, %T A092441 133972165,536346850,2146369793,8587575586,34354757957,137428468074, %U A092441 549733794193,2198977118650,8795996553701,35184170762770 %N A092441 Sequence arising from enumeration of domino tilings of Aztec Pillow-like regions. %D A092441 J. Propp, Enumeration of matchings: problems and progress, pp. 255-291 in L. J. Billera et al., eds, New Perspectives in Algebraic Combinatorics, Cambridge, 1999 (see Problem 13). %H A092441 J. Propp, <a href="http://faculty.uml.edu/jpropp/articles.html">Publications and Preprints</a> %H A092441 J. Propp, Enumeration of matchings: problems and progress, in L. J. Billera et al. (eds.), <a href="http://www.msri.org/publications/books/Book38/contents.html">New Perspectives in Algebraic Combinatorics</a> %H A092441 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (11,-47,101,-116,68,-16). %F A092441 a(n) = 2^(2n+3)-2^(n+2)-2(n+2)(2^(n+1)-1)+(n+1)^2. %F A092441 G.f.: -(8*x^4-2*x^2+x-1)/((x-1)^3*(2*x-1)^2*(4*x-1)). [_Colin Barker_, Nov 22 2012] %e A092441 a(3) = 2^9-2^5-10(2^4-1)+4^2 = 346. %t A092441 LinearRecurrence[{11,-47,101,-116,68,-16},{1,10,65,346,1637,7218},30] (* _Harvey P. Dale_, Nov 26 2022 *) %Y A092441 Cf. A092437-A092443. %K A092441 easy,nonn %O A092441 0,2 %A A092441 Christopher Hanusa (chanusa(AT)math.washington.edu), Mar 24 2004