A092445 a(n) is the first term of the sexy prime quadruple a(n), a(n)+6, a(n)+12 and a(n)+18 that becomes a perfect square if the rightmost digit (1) is removed.
11, 41, 251, 641, 4001, 68891, 121001, 163841, 198811, 466561, 497291, 1115561, 2560361, 6561001, 6806251, 7516891, 11793961, 13712411, 34633211, 47436841, 52670251, 71824001, 84739211
Offset: 1
Examples
a(6)=68891. Removing the rightmost digit results in 6889 = 83^2.