This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A092464 #37 Nov 27 2024 07:26:56 %S A092464 4,9,17,22,30,35,43,48,56,61,69,74,82,87,95,100,108,113,121,126,134, %T A092464 139,147,152,160,165,173,178,186,191,199,204,212,217,225,230,238,243, %U A092464 251,256,264,269,277,282,290,295,303,308,316,321,329,334,342,347,355,360 %N A092464 Numbers congruent to 4 or 9 mod 13. %C A092464 Numbers k such that k^2 is congruent to 3 (modulo 13). %H A092464 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1). %F A092464 From _R. J. Mathar_, Apr 20 2009: (Start) %F A092464 a(n) = a(n-2) + 13 = a(n-1) + a(n-2) - a(n-3) = 13*n/2 - 13/4 - 3*(-1)^n/4. %F A092464 G.f.: x*(4+5*x+4*x^2)/((1+x)*(x-1)^2). (End) %F A092464 a(n) = 13*(n-1) - a(n-1), (with a(1)=4). - _Vincenzo Librandi_, Nov 17 2010 %F A092464 Sum_{n>=1} (-1)^(n+1)/a(n) = tan(5*Pi/26)*Pi/13. - _Amiram Eldar_, Feb 27 2023 %F A092464 From _Amiram Eldar_, Nov 25 2024: (Start) %F A092464 Product_{n>=1} (1 - (-1)^n/a(n)) = 2*sin(5*Pi/26). %F A092464 Product_{n>=1} (1 + (-1)^n/a(n)) = sin(3*Pi/13)*sec(5*Pi/26). (End) %t A092464 Select[Range[400],MemberQ[{4,9},Mod[#,13]]&] (* or *) Select[Range[400], PowerMod[#,2,13]==3&] (* _Harvey P. Dale_, Mar 05 2012 *) %Y A092464 A127547 is a subsequence. %K A092464 nonn,easy %O A092464 1,1 %A A092464 Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Mar 25 2004 %E A092464 More terms from _Ray Chandler_, Mar 27 2004 %E A092464 Edited by _N. J. A. Sloane_, May 10 2007 %E A092464 Incorrect formula deleted by _N. J. A. Sloane_, Jun 16 2010