This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A092491 #18 Aug 21 2019 05:40:54 %S A092491 0,0,0,0,1,6,25,93,333,1172,4083,14137,48778,167981,577874,1986747, %T A092491 6828120,23462470,80611581,276944893,951422603,3268470411,11228209786, %U A092491 38572124196,132505812826,455192771711,1563706508759,5371738013650 %N A092491 a(n) = 2*A058094(n-2) - 5*A058094(n-3) + A058094(n-4) + a(n-1) for n >=4. %C A092491 A recurrence relation follows in a straightforward manner from the above formula and the recurrence relation for A058094. %H A092491 Vincenzo Librandi, <a href="/A092491/b092491.txt">Table of n, a(n) for n = 1..200</a> %H A092491 Z. Stankova and J. West, <a href="https://doi.org/10.1016/j.disc.2003.06.003">Explicit enumeration of 321, hexagon-avoiding permutations</a>, Discrete Math., 280 (2004), 165-189. %H A092491 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-11,9,-4,-4,1). %F A092491 From _Colin Barker_, Aug 21 2019: (Start) %F A092491 G.f.: x^5 / (1 - 6*x + 11*x^2 - 9*x^3 + 4*x^4 + 4*x^5 - x^6). %F A092491 a(n) = 6*a(n-1) - 11*a(n-2) + 9*a(n-3) - 4*a(n-4) - 4*a(n-5) + a(n-6) for n>6. %F A092491 (End) %p A092491 b[1]:=1:b[2]:=2:b[3]:=5:b[4]:=14:b[5]:=42:b[6]:=132: for n from 6 to 34 do b[n+1]:=6*b[n]-11*b[n-1]+9*b[n-2]-4*b[n-3]-4*b[n-4]+b[n-5] od: a[1]:=0:a[2]:=0:a[3]:=0:a[4]:=0: for n from 5 to 34 do a[n]:=2*b[n-2]-5*b[n-3]+b[n-4]+a[n-1] od: seq(a[n],n=1..34); # _Emeric Deutsch_, Apr 12 2005 %t A092491 LinearRecurrence[{6, -11, 9, -4, -4, 1}, {0, 0, 0, 0, 1, 6}, 40] (* _Vincenzo Librandi_, Aug 15 2017 *) %o A092491 (PARI) concat([0,0,0,0], Vec(x^5 / (1 - 6*x + 11*x^2 - 9*x^3 + 4*x^4 + 4*x^5 - x^6) + O(x^30))) \\ _Colin Barker_, Aug 21 2019 %Y A092491 Cf. A058094, A092489, A092490, A092492. %K A092491 nonn,easy %O A092491 1,6 %A A092491 _N. J. A. Sloane_, Apr 04 2004 %E A092491 Edited by _Emeric Deutsch_, Apr 12 2005