This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A092542 #40 Feb 16 2025 08:32:52 %S A092542 1,1,2,3,2,1,1,2,3,4,5,4,3,2,1,1,2,3,4,5,6,7,6,5,4,3,2,1,1,2,3,4,5,6, %T A092542 7,8,9,8,7,6,5,4,3,2,1,1,2,3,4,5,6,7,8,9,10,11,10,9,8,7,6,5,4,3,2,1,1, %U A092542 2,3,4,5,6,7,8,9,10,11,12,13,12,11,10,9,8,7,6,5,4,3,2,1,1,2,3,4,5,6,7,8,9 %N A092542 Table whose n-th row is constant and equal to n, read by antidiagonals alternately upwards and downwards. %C A092542 Let A be sequence A092542 (this sequence) and B be sequence A092543 (1, 2, 1, 1, 2, 3, 4, ...). Under upper trimming or lower trimming, A transforms into B and B transforms into A. Also, B gives the number of times each element of A appears. For example, A(7) = 1 and B(7) = 4 because the 1 in A(7) is the fourth 1 to appear in A. - _Kerry Mitchell_, Dec 28 2005 %C A092542 First inverse function (numbers of rows) for pairing function A056023 and second inverse function (numbers of columns) for pairing function A056011. - _Boris Putievskiy_, Dec 24 2012 %C A092542 The rational numbers a(n)/A092543(n) can be systematically ordered and numbered in this way, as Georg Cantor first proved in 1873. - _Martin Renner_, Jun 05 2016 %D A092542 Amir D. Aczel, "The Mystery of the Aleph, Mathematics, the Kabbalah and the Search for Infinity", Barnes & Noble, NY 2000, page 112. %H A092542 Boris Putievskiy, <a href="http://arxiv.org/abs/1212.2732">Transformations Integer Sequences And Pairing Functions</a>, arXiv:1212.2732 [math.CO], 2012. %H A092542 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/PairingFunction.html">Pairing functions</a> %F A092542 a(n) = ((-1)^t+1)*j/2-((-1)^t-1)*i/2, where i=n-t*(t+1)/2, j=(t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2). - _Boris Putievskiy_, Dec 24 2012 %e A092542 The table %e A092542 1 1 1 1 1 ... %e A092542 2 2 2 2 2 ... %e A092542 3 3 3 3 3 ... %e A092542 4 4 4 4 4 ... %e A092542 gives %e A092542 1; %e A092542 1 2; %e A092542 3 2 1; %e A092542 1 2 3 4; %e A092542 5 4 3 2 1; %e A092542 1 2 3 4 5 6; %t A092542 Table[ Join[Range[2n - 1], Reverse@ Range[2n - 2]], {n, 8}] // Flatten (* _Robert G. Wilson v_, Sep 28 2006 *) %Y A092542 Cf. A092543, A056011, A056023. %Y A092542 Variants of Cantor's enumeration are: A352911, A366191, A319571, A354266. %K A092542 easy,nonn,tabl %O A092542 1,3 %A A092542 _Sam Alexander_, Feb 27 2004 %E A092542 Name edited by _Michel Marcus_, Dec 14 2023