This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A092566 #45 Jul 26 2025 08:07:34 %S A092566 1,1,3,7,22,63,191,573,1752,5372,16597,51465,160258,500551,1567881, %T A092566 4922687,15488481,48821964,154147654,487412324,1543231353,4891986889, %U A092566 15524303265,49314008259,156791992914,498931763064,1588891019625 %N A092566 Main diagonal of triangle A092565, in which the n-th row polynomial equals the numerator of the n-th convergent of the continued fraction [1 + x + x^2; 1 + x + x^2, 1 + x + x^2, ...]. %C A092566 T(n,k) is the number of lattice paths from (0,0) to (n,k) using steps (1,0), (2,0), (1,1), and (1,2). - _Joerg Arndt_, Jun 30 2011 %C A092566 Diagonal of rational function 1/(1 - (x + x^2 + x*y + x*y^2)). - _Gheorghe Coserea_, Aug 06 2018 %H A092566 Alois P. Heinz, <a href="/A092566/b092566.txt">Table of n, a(n) for n = 0..1959</a> %F A092566 a(n) = sum(k=0..n, A037027(n, k)*C(k, n-k) ). %F A092566 O.g.f. A(x) satisfies the equation (27*x^4 - 14*x^3 + 9*x^2 + 14*x - 5)*A(x)^3 + (4-3*x)*A(x) + 1 = 0. - _Mark van Hoeij_, Apr 16 2013 %p A092566 series(RootOf((27*x^4-14*x^3+9*x^2+14*x-5)*y^3+(4-3*x)*y+1, y), x=0, 30); # _Mark van Hoeij_, Apr 16 2013 %t A092566 A037027[n_, k_] := Sum[Binomial[k+j, k]*Binomial[j, n-j-k], {j, 0, n-k}]; A037027[n_, 0] = Fibonacci[n+1]; a[n_] := Sum[A037027[n, k]*Binomial[k, n-k], {k, 0, n}]; Table[a(n), {n,0,26}] (* _Jean-François Alcover_, Jul 18 2011 *) %t A092566 a[0, 0] = 1; a[n_, k_] /; n >= 0 && k >= 0 := a[n, k] = a[n, k-1] + a[n, k-2] + a[n-1, k-1] + a[n-2, k-1]; a[_, _] = 0; %t A092566 a[n_] := a[n, n]; %t A092566 a /@ Range[0, 30] (* _Jean-François Alcover_, Oct 06 2019, after _Joerg Arndt_ *) %o A092566 (PARI) a(n)=if(n<0,0,polcoeff(contfracpnqn(vector(n,i,1+x+x^2))[1,1],n,x)) %o A092566 (PARI) A037027(n,k)=if(n<k || k<0,0,sum(j=0,n-k,binomial(j+k,k)*binomial(j,n- j-k))) %o A092566 a(n)=sum(k=0,n, A037027(n,k)*binomial(k,n-k)) %o A092566 (PARI) /* computation as lattice paths: */ %o A092566 N=40; /* that many terms */ %o A092566 B=matrix(N,N); B[1,1]=1; /* whether T(n,k) memoized */ %o A092566 M=matrix(N,N); M[1,1]=1; /* memoization for T(n,k) */ %o A092566 steps=[[1,0], [2,0], [1,1], [1,2]]; %o A092566 T(n,k)= %o A092566 { %o A092566 my(ret, dx, dy); %o A092566 if ( n<0, return(0) ); %o A092566 if ( k<0, return(0) ); %o A092566 if ( B[n+1,k+1], return( M[n+1,k+1]) ); %o A092566 ret = 0; %o A092566 for (s=1, #steps, %o A092566 dx = steps[s][1]; %o A092566 dy = steps[s][2]; %o A092566 ret += T( n-dx, k-dy ); %o A092566 ); %o A092566 B[n+1,k+1] = 1; %o A092566 M[n+1,k+1] = ret; %o A092566 return( ret ); %o A092566 } %o A092566 T(N-1,N-1); /* trigger computations */ %o A092566 for (n=1,N, print1(M[n,n],", ")); /* show (diagonal) terms */ %o A092566 for(n=0,N-1,for(k=0,n,print1(T(n,k),", "););print();); /* show triangle */ %o A092566 /* _Joerg Arndt_, Jun 30 2011 */ %Y A092566 Cf. A092565, A037027. %K A092566 nonn,nice %O A092566 0,3 %A A092566 _Paul D. Hanna_, Feb 28 2004