A092587 Numbers k such that sigma(phi(k))-phi(sigma(k)) is nonzero and divisible by phi(k), that is A065395(k)/A000010(k) is a nonzero integer.
2, 18, 21, 99, 133, 151, 175, 183, 350, 366, 449, 450, 477, 532, 581, 645, 702, 843, 1072, 1253, 1346, 1508, 1645, 1833, 2085, 2097, 2150, 2421, 3668, 3950, 4223, 4312, 4453, 5264, 6601, 6853, 7128, 7423, 7622, 7713, 8325, 9028, 9364, 9707, 10820
Offset: 1
Keywords
Examples
(sigma(phi(x))-phi(sigma(x)))/phi(x) quotient equals -3 for x=450, -2 for x=18, -1 for x=2, 1 for x=21, 2 for x=99, 3 for x=4223.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
fs[x_] := EulerPhi[DivisorSigma[1, x]] sf[x_] := DivisorSigma[1, EulerPhi[x]] {t=Table[0, {60}], j=1}; Do[s=(sf[n]-fs[n])/EulerPhi[n]; If[ !Equal[s, 0]&&IntegerQ[s], Print[n];t[[j]]=n;j=j+1], {n, 2, 1000000}] t