cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092588 Numbers k such that sigma(phi(k)) - phi(sigma(k)) is nonzero and divisible by sigma(k), that is A065395(k)/A000203(k) is a nonzero integer.

This page as a plain text file.
%I A092588 #15 Mar 11 2020 06:12:26
%S A092588 7,327,463,497,617,691,751,1207,1633,2451,2643,3143,3337,3503,4939,
%T A092588 5609,7093,7597,10327,14987,20427,21103,22345,22481,24739,26491,27193,
%U A092588 28077,37753,37915,42711,42717,47647,48043,49243,50071,51727,54823,57478
%N A092588 Numbers k such that sigma(phi(k)) - phi(sigma(k)) is nonzero and divisible by sigma(k), that is A065395(k)/A000203(k) is a nonzero integer.
%H A092588 Amiram Eldar, <a href="/A092588/b092588.txt">Table of n, a(n) for n = 1..10000</a>
%e A092588 (sigma(phi(x))-phi(sigma(x)))/sigma(x) quotient equals 1 for x=7, 2 for x=327, 3 for x=5609.
%t A092588 fs[x_] := EulerPhi[DivisorSigma[1, x]] sf[x_] := DivisorSigma[1, EulerPhi[x]] {t=Table[0, {100}], j=1}; Do[s=(sf[n]-fs[n])/DivisorSigma[1, n]; If[ !Equal[s, 0]&&IntegerQ[s], Print[n];t[[j]]=n;j=j+1], {n, 2, 1000000}] t
%o A092588 (PARI) is(n)=my(s=sigma(n),t=sigma(eulerphi(n))-eulerphi(s)); t && t%s==0 \\ _Charles R Greathouse IV_, Feb 14 2013
%Y A092588 Cf. A000010, A000203, A033632, A065395, A092584-A092588.
%K A092588 nonn
%O A092588 1,1
%A A092588 _Labos Elemer_, Mar 01 2004