cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092593 a(n) is the smallest number k > 1 for which A001142(k)/A002944(k+1)^n is an integer.

Original entry on oeis.org

2, 3, 9, 9, 15, 15, 38, 45, 45, 45, 61, 61, 225, 225, 225, 225, 225, 225, 225, 225, 225, 225, 635, 635, 1545, 1545, 1545, 1545, 2137, 2137, 2137, 2137, 2137, 2137, 2137, 2137, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660
Offset: 1

Views

Author

Labos Elemer, Mar 10 2004

Keywords

Comments

a(62) > 12500. - Robert Israel, Jan 24 2019

Examples

			n=4, A001142(9) = 1*9*36*...*9*1 = 11759522374656,
A002944(10) = lcm(1,2,...,10)/10=252 and A001142(9) = 2916*(252^4) = 11759522374656,
so a(4)=9, the smallest relevant number.
		

Crossrefs

Programs

  • Maple
    A001142:= proc(n) option remember; procname(n-1)*n^(n-1)/(n-1)! end proc:
    A001142(0):= 1:
    A002944:= proc(n) option remember; ilcm(n,procname(n-1)*(n-1))/n end proc:
    A002944(1):= 1:
    f:= proc(n) option remember; local k;
    for k from procname(n-1) do
       if type(A001142(k)/A002944(k+1)^n, integer) then return k fi
    od
    end proc:
    f(1):= 2:
    map(f, [$1..61]); # Robert Israel, Jan 23 2019
  • Mathematica
    Table[fla=1;Do[s1=Apply[Times, Table[Binomial[n, j], {j, 0, n}]]; s2=Apply[LCM, Table[Binomial[n, j], {j, 0, n}]]; If[IntegerQ[s1/(s2^k)]&&!Equal[n, 1]&&Equal[fla, 1], Print[{n, k}];fla=0], {n, 1, 230}], {k, 1, 25}]

Extensions

Corrected and extended by Robert Israel, Jan 23 2019