A092593 a(n) is the smallest number k > 1 for which A001142(k)/A002944(k+1)^n is an integer.
2, 3, 9, 9, 15, 15, 38, 45, 45, 45, 61, 61, 225, 225, 225, 225, 225, 225, 225, 225, 225, 225, 635, 635, 1545, 1545, 1545, 1545, 2137, 2137, 2137, 2137, 2137, 2137, 2137, 2137, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660
Offset: 1
Keywords
Examples
n=4, A001142(9) = 1*9*36*...*9*1 = 11759522374656, A002944(10) = lcm(1,2,...,10)/10=252 and A001142(9) = 2916*(252^4) = 11759522374656, so a(4)=9, the smallest relevant number.
Programs
-
Maple
A001142:= proc(n) option remember; procname(n-1)*n^(n-1)/(n-1)! end proc: A001142(0):= 1: A002944:= proc(n) option remember; ilcm(n,procname(n-1)*(n-1))/n end proc: A002944(1):= 1: f:= proc(n) option remember; local k; for k from procname(n-1) do if type(A001142(k)/A002944(k+1)^n, integer) then return k fi od end proc: f(1):= 2: map(f, [$1..61]); # Robert Israel, Jan 23 2019
-
Mathematica
Table[fla=1;Do[s1=Apply[Times, Table[Binomial[n, j], {j, 0, n}]]; s2=Apply[LCM, Table[Binomial[n, j], {j, 0, n}]]; If[IntegerQ[s1/(s2^k)]&&!Equal[n, 1]&&Equal[fla, 1], Print[{n, k}];fla=0], {n, 1, 230}], {k, 1, 25}]
Extensions
Corrected and extended by Robert Israel, Jan 23 2019
Comments