This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A092625 #17 Mar 24 2024 10:44:23 %S A092625 222,223,225,227,232,233,235,237,252,253,255,257,272,273,275,277,322, %T A092625 323,325,327,332,333,335,337,352,353,355,357,372,373,375,377,522,523, %U A092625 525,527,532,533,535,537,552,553,555,557,572,573,575,577,722,723,725 %N A092625 Numbers with exactly three prime digits. %C A092625 It is the same as A046034 from two digit numbers from 22 up to four digit numbers from 1222. %C A092625 A193238(a(n))=3; subsequence of A118950. [_Reinhard Zumkeller_, Jul 19 2011] %H A092625 Reinhard Zumkeller, <a href="/A092625/b092625.txt">Table of n, a(n) for n = 1..10000</a> %e A092625 222 has three prime digits, three times 2; %e A092625 1235 has three prime digits, 2, 3 and 5. %p A092625 stev_sez:=proc(n) local i, tren, st, ans, anstren; ans:=[ ]: anstren:=[ ]: tren:=n: for i while (tren>0) do st:=round( 10*frac(tren/10) ): ans:=[ op(ans), st ]: tren:=trunc(tren/10): end do; for i from nops(ans) to 1 by -1 do anstren:=[ op(anstren), op(i,ans) ]; od; RETURN(anstren); end: ts_stpf:=proc(n) local i, stpf, ans; ans:=stev_sez(n): stpf:=0: for i from 1 to nops(ans) do if (isprime(op(i,ans))='true') then stpf:=stpf+1; # number of prime digits fi od; RETURN(stpf) end: ts_pr_nt:=proc(n) local i, stpf, ans, ans1, tren; ans:=[ ]: stpf:=0: tren:=1: for i from 1 to n do if ( ts_stpf(i) = 3) then ans:=[ op(ans), i ]: tren:=tren+1; fi od; RETURN(ans) end: ts_pr_nt(2000); %t A092625 Select[Range[800],Total[Boole[PrimeQ[IntegerDigits[#]]]]==3&] (* _Harvey P. Dale_, Dec 31 2023 *) %o A092625 (Haskell) %o A092625 import Data.List (elemIndices) %o A092625 a092625 n = a092625_list !! (n-1) %o A092625 a092625_list = elemIndices 3 a193238_list %o A092625 -- _Reinhard Zumkeller_, Jul 19 2011 %Y A092625 Cf. A034895, A046034, A085557, A019546, A034844. %Y A092625 Cf. A084984, A092620, A092624. %K A092625 nonn,base %O A092625 1,1 %A A092625 _Jani Melik_, Apr 11 2004