This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A092626 #7 Feb 18 2018 14:45:43 %S A092626 13,17,29,31,43,47,59,67,71,79,83,97,127,137,157,173,229,239,251,263, %T A092626 271,283,293,307,313,317,331,347,359,367,379,383,397,433,457,503,521, %U A092626 547,563,571,587,593,653,673,677,739,743,751,787,797,823,827,853,857 %N A092626 Primes with one nonprime digit. %C A092626 Heuristically, there are 15/(8 log 10) * n^(log_10 4) members up to n, or about 0.814 * n^0.602. %H A092626 Harvey P. Dale, <a href="/A092626/b092626.txt">Table of n, a(n) for n = 1..1000</a> %e A092626 13 is prime and it has one nonprime digit, 1; %e A092626 3259 is prime and it has one nonprime digit, 9. %p A092626 stev_sez:=proc(n) local i, tren, st, ans, anstren; ans:=[ ]: anstren:=[ ]: tren:=n: for i while (tren>0) do st:=round( 10*frac(tren/10) ): ans:=[ op(ans), st ]: tren:=trunc(tren/10): end do; for i from nops(ans) to 1 by -1 do anstren:=[ op(anstren), op(i,ans) ]; od; RETURN(anstren); end: %p A092626 ts_stnepf:=proc(n) local i, stpf, ans; ans:=stev_sez(n): stpf:=0: for i from 1 to nops(ans) do if (isprime(op(i,ans))='false') then stpf:=stpf+1; # number of nonprime digits fi od; RETURN(stpf) end: %p A092626 ts_pr_neprn:=proc(n) local i, stpf, ans, ans1, tren; ans:=[ ]: stpf:=0: tren:=1: for i from 1 to n do if ( isprime(i)='true' and ts_stnepf(i) = 1) then ans:=[ op(ans), i ]: tren:=tren+1; fi od; RETURN(ans) end: ts_pr_neprn(4000); %t A092626 Select[Prime[Range[200]],Count[IntegerDigits[#],_?(!PrimeQ[#]&)]==1&] (* _Harvey P. Dale_, Feb 18 2018 *) %Y A092626 Cf. A019546. %K A092626 nonn,base,easy %O A092626 1,1 %A A092626 _Jani Melik_, Apr 11 2004 %E A092626 Edited by R. J. Mathar, Nov 02 2009 %E A092626 Comment from _Charles R Greathouse IV_, Mar 19 2010