This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A092635 #45 Aug 18 2024 11:27:26 %S A092635 1,-2,2,4,-10,-92,212,4744,-10330,-440492,926972,64905784,-133989700, %T A092635 -13958115992,28507072232,4129849252624,-8382195909370, %U A092635 -1609609189734092,3254514296768492,799400112196210264,-1612314122867559340 %N A092635 Coefficients in asymptotic expansion of (Pi*n/16^n)*binomial(2n,n)^2 in powers of 1/(8n). %H A092635 Paul D. Hanna, <a href="/A092635/b092635.txt">Table of n, a(n) for n = 0..300</a> %F A092635 E.g.f. E(x) satisfies: E(x) = E(-x)*exp(-4*x). - _Paul D. Hanna_, Apr 02 2011 %F A092635 O.g.f.: A(x) = 1/(1 + 2*x/(1-x + 3*x^2/(1 + 15*x^2/(1 + 35*x^2/(1 + 63*x^2/(1 + 99*x^2/(1 + ...+ (4*n^2-1)*x^2/(1 + ...)))))))) (continued fraction). - _Paul D. Hanna_, Apr 02 2011 %F A092635 From _Peter Bala_, Mar 12 2015: (Start) %F A092635 Let 2/(1 + exp(4*x)) = Sum_{n >= 0} b(n)*x^n/n!, so that b(n) = (-4)^n*E(n,1), where E(n,x) is the n-th Euler polynomial. %F A092635 Then exp( Sum_{n >= 1} b(n)*x^n/n ) = 1 - 2*x + 2*x^2 + 4*x^3 - 10*x^4 - 92*x^5 + ... appears to be the o.g.f. for this sequence. %F A092635 Assuming this is true we have the recurrence a(0) = 1 and a(n) = 1/n*Sum_{k = 0..n-1} (-4)^(n-k)*E(n-k,1)*a(k) for n >= 1. (End) %F A092635 O.g.f.: A(x) = Product_{n>=1} B(x,n)^(1/2^n) where B(x,n) = Product{k=1..n} (1 + 4*k*x)^((-1)^k*binomial(n,k)). Compare to Product_{n>=1} B(x,n) = 1 - 4*x and Product_{n>=1} B(x,n)^(1/n) = exp(-4*x). - _Paul D. Hanna_, Mar 03 2024 %F A092635 Conjecture from _Paul D. Hanna_, Aug 15 2024: (Start) %F A092635 Let A(x) = Sum_{n>=0} a(n)*x^(n+1), then A(x) satisfies: %F A092635 A(x) = -x^2 / A(-x), %F A092635 A(x) = -A(-x/(1+4*x)), %F A092635 A(x) = x^2 / A(x/(1-4*x)). (End) %e A092635 binomial(2*n,n)^2*Pi*n/16^n ~ 1 -2/(8n) +2/(8n)^2 +4/(8n)^3 + ... %e A092635 From _Paul D. Hanna_, Apr 02 2011: (Start) %e A092635 O.g.f.: A(x) = 1 - 2*x + 2*x^2 + 4*x^3 - 10*x^4 - 92*x^5 + 212*x^6 + ... %e A092635 E.g.f.: E(x) = 1 - 2*x + 2*x^2/2! + 4*x^3/3! - 10*x^4/4! - 92*x^5/5! + 212*x^6/6! + ... %e A092635 Note that E(x)*exp(2*x) = sqrt(E(x)*E(-x)) is an even function: %e A092635 E(x)*exp(2*x) = 1 - 2*x^2/2! + 22*x^4/4! - 692*x^6/6! + 45862*x^8/8! + ... (End) %p A092635 #Uses the conjectural recurrence equation %p A092635 A092635 := proc (n) option remember; if n = 0 then 1 else add((-4)^(n-k)*euler(n-k, 1)*A092635(k), k = 0 .. n-1)/n end if; end proc: %p A092635 seq(A092635(n), n = 0 .. 20); # _Peter Bala_, Mar 12 2015 %t A092635 m = 21; %t A092635 1/(1+2x/(1-x+ContinuedFractionK[(4i^2-1)x^2, 1, {i, 1, m/2 // Floor}]))+O[x]^m // CoefficientList[#, x]& (* _Jean-François Alcover_, Nov 02 2019 *) %t A092635 CoefficientList[Normal[Series[Pi*n*Binomial[n/4, n/8]^2 / 2^(n/2+3), {n, Infinity, 20}]], 1/n] (* _Vaclav Kotesovec_, Aug 18 2024 *) %o A092635 (PARI) a(n)=if(n<0,0,polcoeff(exp(intformal(serlaplace(-1/cosh(x*2+x*O(x^n))^2*2))),n)) %o A092635 (PARI) a(n)=local(A);if(n<1,n==0,A=1; for(m=1,n,A+=x^2*O(x^m);A=Pol(A)+polcoeff(subst(A,x,x/(1+8*x))/A*(1+8*x)/(1+4*x)^2,m+1)/8/m*x^m);polcoeff(A,n)) %o A092635 (PARI) {B(x,n) = prod(k=1,n, (1 + 4*k*x)^((-1)^k*binomial(n,k)) )} %o A092635 {a(n) = polcoeff( A = prod(m=1,n, B(x +x*O(x^n), m)^(1/2^m)), n)} %o A092635 for(n=0,30,print1(a(n),", ")) \\ _Paul D. Hanna_, Mar 03 2024 %Y A092635 Cf. A002894, A012393, A188514. %K A092635 sign %O A092635 0,2 %A A092635 _Michael Somos_, Mar 02 2004