cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092687 First column and main diagonal of triangle A092686, in which the convolution of each row with {1,2} produces a triangle that, when flattened, equals the flattened form of A092686.

This page as a plain text file.
%I A092687 #18 Nov 03 2019 09:04:18
%S A092687 1,2,6,16,46,132,384,1120,3278,9612,28236,83072,244752,722048,2132704,
%T A092687 6306304,18666190,55300732,163968612,486528288,1444571068,4291629384,
%U A092687 12756459936,37934818112,112855778768,335867740704,999895548736
%N A092687 First column and main diagonal of triangle A092686, in which the convolution of each row with {1,2} produces a triangle that, when flattened, equals the flattened form of A092686.
%C A092687 Conjecture: Limit n->infinity a(n)^(1/n) = 3. - _Vaclav Kotesovec_, Jun 29 2015
%H A092687 Vaclav Kotesovec, <a href="/A092687/b092687.txt">Table of n, a(n) for n = 0..850</a>
%F A092687 G.f. satisfies: A(x) = A( x^2/(1-2x) )/(1-2x). Recurrence: a(n) = Sum_{k=0..floor(n/2)} C(n-k,k)*2^(n-2k)*a(k). - _Paul D. Hanna_, Jul 10 2006
%t A092687 m = 27; A[_] = 1; Do[A[x_] = A[x^2/(1-2x)]/(1-2x) + O[x]^m // Normal, {m}]; CoefficientList[A[x], x] (* _Jean-François Alcover_, Nov 03 2019 *)
%o A092687 (PARI) T(n,k)=if(n<0||k>n,0, if(n==0&k==0,1, if(n==1&k<=1,2, if(k==n,T(n,0), 2*T(n-1,k)+T(n-1,k+1)))))
%o A092687 a(n)=T(n,0)
%o A092687 for(n=0,30,print1(a(n),", "))
%o A092687 (PARI) a(n)=local(A=1+x);for(i=0,n\2,A=subst(A,x,x^2/(1-2*x+x*O(x^n)))/(1-2*x));polcoeff(A,n) \\ _Paul D. Hanna_, Jul 10 2006
%o A092687 (PARI) /* Using Recurrence: */
%o A092687 a(n)=if(n==0, 1, sum(k=0, n\2, binomial(n-k, k)*2^(n-2*k)*a(k)))
%o A092687 for(n=0,30,print1(a(n),", ")) \\ _Paul D. Hanna_, Jul 10 2006
%Y A092687 Cf. A092683, A092686, A092688, A092689.
%K A092687 nonn
%O A092687 0,2
%A A092687 _Paul D. Hanna_, Mar 04 2004