This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A092735 #29 Aug 26 2024 05:02:07 %S A092735 3,0,2,0,2,9,3,2,2,7,7,7,6,7,9,2,0,6,7,5,1,4,2,0,6,4,9,3,0,7,2,0,4,1, %T A092735 8,3,1,9,1,7,4,3,2,4,7,5,2,9,5,4,0,2,2,6,2,7,5,4,2,3,4,4,9,2,3,8,3,1, %U A092735 3,4,6,6,7,2,9,3,6,1,1,8,8,0,9,3,8,4,5,2,6,2,3,0,9,0,0,0,9,7,3,5,5,6,8,6,3 %N A092735 Decimal expansion of Pi^7. %C A092735 Wentworth (1903) shows how to compute the tangent of 15 degrees (A019913) to five decimal places by the laborious process of adding up the first few terms of Pi/12 + Pi^3/5184 + 2Pi^5/3732480 + 17Pi^7/11287019520 + ... - _Alonso del Arte_, Mar 13 2015 %D A092735 George Albert Wentworth, New Plane and Spherical Trigonometry, Surveying, and Navigation. Boston: The Atheneum Press (1903): 240. %H A092735 G. C. Greubel, <a href="/A092735/b092735.txt">Table of n, a(n) for n = 4..10000</a> %H A092735 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a> %F A092735 From _Peter Bala_, Oct 30 2019: (Start) %F A092735 Pi^7 = (6!/(2*33367)) * Sum_{n >= 0} (-1)^n*( 1/(n + 1/6)^7 + 1/(n + 5/6)^7 ), where 33367 = ((3^7 + 1)/4)*A000364(3) = A002437(3). %F A092735 Pi^7 = (6!/(2*1191391)) * Sum_{n >= 0} (-1)^n*( 1/(n + 1/10)^7 - 1/(n + 3/10)^7 - 1/(n + 7/10)^7 + 1/(n + 9/10)^7 ), where 1191391 = ((5^7 - 1)/4)*A000364(3). (End) %e A092735 3020.293227776792067514206493... %t A092735 RealDigits[Pi^7, 10, 100][[1]] (* _Alonso del Arte_, Mar 13 2015 *) %o A092735 (PARI) Pi^7 \\ _G. C. Greubel_, Mar 09 2018 %o A092735 (Magma) R:= RealField(100); (Pi(R))^7; // _G. C. Greubel_, Mar 09 2018 %Y A092735 Cf. A000796, A002161, A019692, A091925, A092731, A000364, A002437. %K A092735 cons,nonn %O A092735 4,1 %A A092735 _Mohammad K. Azarian_, Apr 12 2004