cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092759 a(n) = prime(n)^7.

This page as a plain text file.
%I A092759 #48 Feb 04 2024 01:17:02
%S A092759 128,2187,78125,823543,19487171,62748517,410338673,893871739,
%T A092759 3404825447,17249876309,27512614111,94931877133,194754273881,
%U A092759 271818611107,506623120463,1174711139837,2488651484819,3142742836021,6060711605323
%N A092759 a(n) = prime(n)^7.
%C A092759 Seventh powers of prime numbers. - _Wesley Ivan Hurt_, Mar 27 2014
%H A092759 T. D. Noe, <a href="/A092759/b092759.txt">Table of n, a(n) for n = 1..1000</a>
%H A092759 <a href="/index/Pri#prime_signature">Index to sequences related to prime signature</a>
%F A092759 a(n) = A086874(n-1), n>1. - _R. J. Mathar_, Sep 08 2008
%F A092759 a(n) = A000040(n)^7 = A001015(A000040(n)). - _Wesley Ivan Hurt_, Mar 27 2014
%F A092759 Sum_{n>=1} 1/a(n) = P(7) = 0.0082838328... (A085967). - _Amiram Eldar_, Jul 27 2020
%F A092759 From _Amiram Eldar_, Jan 24 2021: (Start)
%F A092759 Product_{n>=1} (1 + 1/a(n)) = zeta(7)/zeta(14) = A013665/A013672.
%F A092759 Product_{n>=1} (1 - 1/a(n)) = 1/zeta(7) = 1/A013665. (End)
%e A092759 a(1) = 128 since the seventh power of the first prime is 2^7 = 128. - _Wesley Ivan Hurt_, Mar 27 2014
%p A092759 A092759:=n->ithprime(n)^7; seq(A092759(n), n=1..30); # _Wesley Ivan Hurt_, Mar 27 2014
%t A092759 Array[Prime[ # ]^7 &, 30] (* _Vladimir Joseph Stephan Orlovsky_, May 01 2008 *)
%t A092759 Table[Prime[n]^7, {n, 30}] (* _Wesley Ivan Hurt_, Mar 27 2014 *)
%o A092759 (PARI) a(n)=prime(n)^7 \\ _Charles R Greathouse IV_, Jul 20 2011
%o A092759 (Magma) [p^7: p in PrimesUpTo(300)]; // _Vincenzo Librandi_, Mar 27 2014
%Y A092759 Subsequence of A030626.
%Y A092759 Cf. A085967, A013665, A013672.
%K A092759 nonn,easy
%O A092759 1,1
%A A092759 _Jorge Coveiro_, Apr 13 2004