A092782 The ternary tribonacci word; also a Rauzy fractal sequence: fixed point of the morphism 1 -> 12, 2 -> 13, 3 -> 1, starting from a(1) = 1.
1, 2, 1, 3, 1, 2, 1, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 1, 2, 1, 3, 1, 2, 1, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 1, 2, 1, 3
Offset: 1
Examples
From _Joerg Arndt_, Sep 14 2013: (Start) The first few steps of the substitution are Start: 1 Maps: 1 --> 12 2 --> 13 3 --> 1 ------------- 0: (#=1) 1 1: (#=2) 12 2: (#=4) 1213 3: (#=7) 1213121 4: (#=13) 1213121121312 5: (#=24) 121312112131212131211213 6: (#=44) 12131211213121213121121312131211213121213121 7: (#=81) 121312112131212131211213121312112131212131211213121121312121312112131213121121312 (End)
References
- This entry has a fairly complete list of references and links concerning the ternary tribonacci word. - N. J. A. Sloane, Aug 17 2018
- J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 246.
- Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..19513
- Pierre Arnoux and Edmund Harriss, What is a Rauzy Fractal?, Notices Amer. Math. Soc., 61 (No. 7, 2014), 768-770, also p. 704 and front cover.
- Scott Balchin and Dan Rust, Computations for Symbolic Substitutions, Journal of Integer Sequences, Vol. 20 (2017), Article 17.4.1.
- Elena Barcucci, Luc Belanger and Srecko Brlek, On tribonacci sequences, Fib. Q., 42 (2004), 314-320. See T on page 315.
- Marcy Barge and Jaroslaw Kwapisz, Geometric theory of unimodular Pisot substitutions, Amer. J. Math. 128 (2006), no. 5, 1219--1282. MR2262174 (2007m:37039). See Fig. 18.1. - _N. J. A. Sloane_, Aug 06 2014
- Jean Berstel and J. Karhumaki, Combinatorics on words - a tutorial, Bull. EATCS, #79 (2003), pp. 178-228.
- Nataliya Chekhova, Pascal Hubert, and Ali Messaoudi, Propriétés combinatoires, ergodiques et arithmétiques de la substitution de Tribonacci, Journal de théorie des nombres de Bordeaux, 13.2 (2001): 371-394.
- David Damanik and Luca Q. Zamboni, Arnoux-Rauzy subshifts: linear recurrence, powers and palindromes, arXiv:math/0208137 [math.CO], 2002.
- Aldo de Luca and Luca Q. Zamboni, On prefixal factorizations of words, arXiv:1505.02309 [math.CO], 2015. See Example 2.
- Aldo de Luca and Luca Q. Zamboni, On prefixal factorizations of words, European Journal of Combinatorics, Volume 52, Part A, 2016, pp. 59-73. See Example 2.
- F. Michel Dekking, Morphisms, Symbolic Sequences, and Their Standard Forms, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.1.
- F. Michel Dekking, Jeffrey Shallit, and N. J. A. Sloane, Queens in exile: non-attacking queens on infinite chess boards, Electronic J. Combin., 27:1 (2020), #P1.52.
- Eric Duchêne and Michel Rigo, A morphic approach to combinatorial games: the Tribonacci case. RAIRO - Theoretical Informatics and Applications, 42, 2008, pp 375-393. doi:10.1051/ita:2007039. [Also available here]
- Jacques Justin and Laurent Vuillon, Return words in Sturmian and episturmian words, RAIRO-Theoretical Informatics and Applications 34.5 (2000): 343-356. See Example on page 345.
- Aayush Rajasekaran, Narad Rampersad, and Jeffrey Shallit, Overpals, Underlaps, and Underpals, In: Brlek S., Dolce F., Reutenauer C., Vandomme É. (eds) Combinatorics on Words, WORDS 2017, Lecture Notes in Computer Science, vol 10432.
- Gérard Rauzy, Nombres algébriques et substitutions, Bull. Soc. Math. France 110.2 (1982): 147-178. See page 148.
- Victor F. Sirvent, Semigroups and the self-similar structure of the flipped tribonacci substitution, Applied Math. Letters, 12 (1999), 25-29. [Contains further related references.]
- Victor F. Sirvent, The common dynamics of the Tribonacci substitutions, Bulletin of the Belgian Mathematical Society-Simon Stevin 7.4 (2000): 571-582.
- Bo Tan and Zhi-Ying Wen, Some properties of the Tribonacci sequence, European Journal of Combinatorics, 28 (2007) 1703-1719.
- Ondřej Turek, Abelian Complexity Function of the Tribonacci Word, J. Int. Seq. 18 (2015) Article 15.3.4.
- Index entries for sequences that are fixed points of mappings.
Crossrefs
Programs
-
Maple
f(1):= (1, 2): f(2):= (1, 3): f(3):= (1): A:= [1]: for i from 1 to 16 do A:= map(f, A) od: A; # 19513 terms of A092782; A103269; from N. J. A. Sloane, Aug 06 2018
-
Mathematica
Nest[ Flatten[# /. {1 -> {1, 2}, 2 -> {1, 3}, 3 -> 1}] &, {1}, 8] (* Robert G. Wilson v, Mar 04 2005 and updated Apr 29 2018 *)
-
PARI
w=vector(9,x,[]); w[1]=[1]; for(n=2,9,for(k=1,#w[n-1],m=w[n-1][k];v=[];if(m-1,if(m-2,v=[1],v=[1,3]),v=[1,2]);w[n]=concat(w[n],v))); w[9] \\ Gerald McGarvey, Dec 18 2009
-
PARI
strsub(s, vv, off=0)= { my( nl=#vv, r=[], ct=1 ); while ( ct <= #s, r = concat(r, vv[ s[ct] + (1-off) ] ); ct += 1; ); return( r ); } t=[1]; for (k=1, 10, t=strsub( t, [[1,2], [1,3], [1]], 1 ) ); t \\ Joerg Arndt, Sep 14 2013
-
PARI
A092782_vec(N,s=[[1,2],[1,3],1],A=[1])={while(#A
M. F. Hasler, Dec 14 2018
Formula
a(n) = A080843(n-1) + 1. - Joerg Arndt, Sep 14 2013
Extensions
Additional references and links added by N. J. A. Sloane, Aug 17 2018
Comments