cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092783 Ceiling of imaginary parts of zeros of Riemann zeta function.

This page as a plain text file.
%I A092783 #20 Feb 25 2019 15:42:50
%S A092783 15,22,26,31,33,38,41,44,49,50,53,57,60,61,66,68,70,73,76,78,80,83,85,
%T A092783 88,89,93,95,96,99,102,104,106,108,112,112,115,117,119,122,123,125,
%U A092783 128,130,132,134,135,139,140,142,144,147,148,151,151,154,157,158,159,162,164,166,168,170,170,174
%N A092783 Ceiling of imaginary parts of zeros of Riemann zeta function.
%H A092783 <a href="/index/Z#zeta_function">OEIS index entries for sequences related to the zeta function</a>.
%F A092783 a(n) = 1+A013629(n). - _Robert G. Wilson v_, Jan 27 2015
%t A092783 Table[Ceiling[Im[ZetaZero[n]]], {n, 1, 65}] (* _Jean-François Alcover_, Feb 25 2019 *)
%o A092783 (Sage)
%o A092783 def A092783_list(n):
%o A092783     Z = lcalc.zeros(n)
%o A092783     return [ceil(z) for z in Z]
%o A092783 A092783_list(50) # _Peter Luschny_, May 02 2014
%o A092783 (PARI) apply(ceil, lfunzeros(1,[1,180])) \\ _M. F. Hasler_, Nov 23 2018
%Y A092783 Cf. A002410: nearest integer to imaginary part of n-th zero of Riemann zeta function (main entry).
%Y A092783 Cf. A013629: floor of imaginary parts of zeros of Riemann zeta function.
%Y A092783 Imaginary part of k-th nontrivial zero of Riemann zeta function: A058303 (k=1), A065434 (k=2), A065452 (k=3), A065453 (k=4), A192492 (k=5), A305741 (k=6), A305742 (k=7), A305743 (k=8), A305744 (k=9), A306004 (k=10).
%K A092783 nonn
%O A092783 1,1
%A A092783 _Jorge Coveiro_, Apr 14 2004
%E A092783 More terms, link and cross-references from _M. F. Hasler_, Nov 23 2018