This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A092783 #20 Feb 25 2019 15:42:50 %S A092783 15,22,26,31,33,38,41,44,49,50,53,57,60,61,66,68,70,73,76,78,80,83,85, %T A092783 88,89,93,95,96,99,102,104,106,108,112,112,115,117,119,122,123,125, %U A092783 128,130,132,134,135,139,140,142,144,147,148,151,151,154,157,158,159,162,164,166,168,170,170,174 %N A092783 Ceiling of imaginary parts of zeros of Riemann zeta function. %H A092783 <a href="/index/Z#zeta_function">OEIS index entries for sequences related to the zeta function</a>. %F A092783 a(n) = 1+A013629(n). - _Robert G. Wilson v_, Jan 27 2015 %t A092783 Table[Ceiling[Im[ZetaZero[n]]], {n, 1, 65}] (* _Jean-François Alcover_, Feb 25 2019 *) %o A092783 (Sage) %o A092783 def A092783_list(n): %o A092783 Z = lcalc.zeros(n) %o A092783 return [ceil(z) for z in Z] %o A092783 A092783_list(50) # _Peter Luschny_, May 02 2014 %o A092783 (PARI) apply(ceil, lfunzeros(1,[1,180])) \\ _M. F. Hasler_, Nov 23 2018 %Y A092783 Cf. A002410: nearest integer to imaginary part of n-th zero of Riemann zeta function (main entry). %Y A092783 Cf. A013629: floor of imaginary parts of zeros of Riemann zeta function. %Y A092783 Imaginary part of k-th nontrivial zero of Riemann zeta function: A058303 (k=1), A065434 (k=2), A065452 (k=3), A065453 (k=4), A192492 (k=5), A305741 (k=6), A305742 (k=7), A305743 (k=8), A305744 (k=9), A306004 (k=10). %K A092783 nonn %O A092783 1,1 %A A092783 _Jorge Coveiro_, Apr 14 2004 %E A092783 More terms, link and cross-references from _M. F. Hasler_, Nov 23 2018