This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A092785 #14 Feb 14 2015 08:45:32 %S A092785 1,-1,7,-21,81,-295,1107,-4165,15793,-60171,230253,-884235,3406105, %T A092785 -13154947,50922987,-197519941,767502945,-2987013067,11641557717, %U A092785 -45429853651,177490745985,-694175171647,2717578296117,-10648297329691,41757352712481,-163875286898935 %N A092785 a(n) = sum(sum(binomial(j-n-1,m),m=0..n),j=0..n). %H A092785 Alois P. Heinz, <a href="/A092785/b092785.txt">Table of n, a(n) for n = 0..500</a> %F A092785 Differs from A072547 by -1, +1, -1, +1, -1, ... - _Ralf Stephan_, Apr 19 2004 %F A092785 Equals sum(m=0, n, (-1)^m*binomial(n+m, m)). - _Henry Gould_, Apr 23 2004 %F A092785 Let f(n) = (-1)^n a(n). Then 2f(n) + f(n-1) = (3n+1)C(n) + (-1)^n, where C(n) = (2n+1)!/n!(n+1)! is a Catalan number (A000108). - _Henry Gould_, Apr 24 2004 %F A092785 Recurrence: 2*(n+1)*(15*n^2 - 31*n + 12)*a(n) = -(5*n-3)*(15*n^2 - 19*n - 4)*a(n-1) + (165*n^3 - 266*n^2 - 11*n + 60)*a(n-2) - 2*(2*n-3)*(15*n^2 - n - 4)*a(n-3). - _Vaclav Kotesovec_, Sep 05 2014 %K A092785 sign %O A092785 0,3 %A A092785 Francois Jooste (pin(AT)myway.com), Apr 23 2004