This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A092811 #39 Apr 25 2025 09:48:00 %S A092811 1,4,32,256,2048,16384,131072,1048576,8388608,67108864,536870912, %T A092811 4294967296,34359738368,274877906944,2199023255552,17592186044416, %U A092811 140737488355328,1125899906842624,9007199254740992,72057594037927936,576460752303423488,4611686018427387904 %N A092811 Expansion of g.f. (1-4*x)/(1-8*x). %C A092811 4th binomial transform of (1,0,16,0,256,...). %C A092811 Number of compositions of even natural numbers into n parts <= 7. - _Adi Dani_, May 28 2011 %H A092811 Vincenzo Librandi, <a href="/A092811/b092811.txt">Table of n, a(n) for n = 0..200</a> %H A092811 <a href="/index/Di#divseq">Index to divisibility sequences</a> %H A092811 <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (8). %F A092811 a(n) = 8^n/2 + 0^n/2. %F A092811 a(n) = A001045(3n+1) - A001045(3n-1) + 0^n/2. %F A092811 a(n) = A013731(n-1), n > 0. - _R. J. Mathar_, Sep 08 2008 %F A092811 a(n) = 4 * 8^(n-1), a(0)=1. - _Vincenzo Librandi_, Jun 16 2011 %F A092811 a(n) = Sum_{k=0..n} A134309(n,k)*4^k = Sum_{k=0..n} A055372(n,k)*3^k. - _Philippe Deléham_, Feb 04 2012 %F A092811 E.g.f.: (1 + exp(8*x))/2. - _Stefano Spezia_, May 29 2024 %e A092811 From _Adi Dani_, May 28 2011: (Start) %e A092811 a(2)=32: there are 32 compositions of even natural numbers into 2 parts <= 7: %e A092811 (0,0); %e A092811 (0,2),(2,0),(1,1); %e A092811 (0,4),(4,0),(1,3),(3,1),(2,2); %e A092811 (0,6),(6,0),(1,5),(5,1),(2,4),(4,2),(3,3); %e A092811 (1,7),(7,1),(2,6),(6,2),(3,5),(5,3),(4,4); %e A092811 (3,7),(7,3),(4,6),(6,4),(5,5); %e A092811 (5,7),(7,5),(6,6); %e A092811 (7,7). (End) %t A092811 Table[EulerPhi[8^n],{n,0,40}] (* _Vladimir Joseph Stephan Orlovsky_, Nov 10 2009 *) %o A092811 (Magma) [8^n/2+0^n/2: n in [0..20]]; // _Vincenzo Librandi_, Jun 16 2011 %o A092811 (PARI) a(n)=max(1,8^n/2) \\ _Charles R Greathouse IV_, Apr 09 2012 %o A092811 (Python) %o A092811 def A092811(n): return 1<<3*n-1 if n else 1 # _Chai Wah Wu_, Apr 25 2025 %Y A092811 Cf. A001045, A013731 (same sequence omitting initial 1), A055372, A134309. %K A092811 easy,nonn %O A092811 0,2 %A A092811 _Paul Barry_, Mar 10 2004