This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A092831 #23 Feb 16 2025 08:32:53 %S A092831 2,7,12,36 %N A092831 Indices of prime Motzkin numbers. %C A092831 Next term > 10^5. - _Joerg Arndt_, Oct 17 2016 %C A092831 From _Serge Batalov_, Feb 02 2022: (Start) %C A092831 Next term (if it exists) > 2*10^7. %C A092831 This sequence may be finite, for the reason that with increasing n, the density of trivially composite Motzkin numbers approaches 1. For 7*10^6 < n < 20*10^6, all Motzkin numbers have a small factor not exceeding 63809. See below. %C A092831 Rowland and Yassawi, and later Burns, established asymptotic densities of A001006(n) modulo primes up to 29. In particular, the asymptotic densities of A001006(n) == 0 modulo 3, 7, 17 or 19 are 1. (End) %H A092831 Rob Burns, <a href="https://arxiv.org/abs/1612.08146">Structure and asymptotics for Motzkin numbers modulo small primes using automata</a>, arXiv:1612.08146 [math.NT], 2016. %H A092831 E. Rowland and R. Yassawi, <a href="http://arxiv.org/abs/1310.8635">Automatic congruences for diagonals of rational functions</a>, arXiv preprint arXiv:1310.8635 [math.NT], 2013-2014. %H A092831 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MotzkinNumber.html">Motzkin Number</a> %H A092831 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/IntegerSequencePrimes.html">Integer Sequence Primes</a> %Y A092831 Cf. A001006, A092832. %K A092831 nonn,more %O A092831 1,1 %A A092831 _Eric W. Weisstein_, Mar 06 2004