cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A092851 Difference in count of primes <= mean and > mean below 10^n in A092849 and A092850.

Original entry on oeis.org

0, 1, 6, 33, 176, 1254, 8933, 66825, 519694, 4138135, 33767309, 280876390, 2372830737, 20310411686, 175820328509, 1536914640835, 13549491187945, 120350669560296, 1076119459308449, 9679474365334444, 87530988547642414, 795367317696619250
Offset: 1

Views

Author

Enoch Haga, Mar 07 2004

Keywords

Examples

			a(3) = 6 because the count at 10^3 in A092849 is 87 and in A092850 it is 81. 87 - 81 = 6.
		

Crossrefs

Formula

a(n) = A092849(n)-A092850(n).

Extensions

a(14)-a(22) from Amiram Eldar, Jun 14 2024

A092849 Number of primes <= A092800(n).

Original entry on oeis.org

2, 13, 87, 631, 4884, 39876, 336756, 2914140, 25683614, 229595323, 2075911061, 18944394204, 174219183788, 1612626081244, 15010195375589, 140387627837380, 1318553324421089, 12430152478650578, 117566893367826528, 1115249538463126642, 10607400237283187171, 101131327003506262770, 966289700136857769743
Offset: 1

Views

Author

Enoch Haga, Mar 07 2004

Keywords

Examples

			Below 10^1 there are 4 primes: 2 + 3 + 5 + 7 = 17. The rounded mean is 17/4 =~ 4. There are 2 primes less than 4: 2 and 3, so a(1) = 2.
		

Crossrefs

Formula

a(n) = PrimePi(A092800(n)) = PrimePi(A046731(n)/A006880(n)). - Robert G. Wilson v, Jan 19 2007

Extensions

a(9)-a(13) from Robert G. Wilson v, Jan 19 2007
a(14)-a(23) from Amiram Eldar, Jun 14 2024
Showing 1-2 of 2 results.