A092855 Numbers k such that the k-th bit in the binary expansion of sqrt(2) - 1 is 1: sqrt(2) - 1 = Sum_{n>=1} 1/2^a(n).
2, 3, 5, 7, 13, 16, 17, 18, 19, 22, 23, 26, 27, 30, 31, 32, 33, 34, 35, 36, 39, 40, 41, 43, 44, 45, 46, 49, 50, 53, 56, 61, 65, 67, 68, 71, 73, 74, 75, 76, 77, 79, 80, 84, 87, 88, 90, 91, 94, 95, 97, 98, 99, 101, 103, 105, 108, 110, 112, 114, 115, 116, 117, 118, 120, 123, 124
Offset: 1
Links
- Paolo Xausa, Table of n, a(n) for n = 1..10000
- Ferenc Adorjan, Binary mapping of monotonic sequences and the Aronson function.
Programs
-
Mathematica
PositionIndex[First[RealDigits[Sqrt[2], 2, 200, -1]]][1] (* Paolo Xausa, Sep 01 2024 *)
-
PARI
v=binary(sqrt(2))[2]; for(i=1,#v,if(v[i],print1(i,","))) \\ Ralf Stephan, Mar 30 2014
Extensions
New name from Joerg Arndt, Aug 26 2024
Comments