cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092865 Nonzero elements in Klee's identity Sum[(-1)^k binomial[n,k]binomial[n+k,m],{k,0,n}] == (-1)^n binomial[n,m-n].

Table of values

n a(n)
0 1
1 -1
2 -1
3 1
4 2
5 -1
6 1
7 -3
8 1
9 -3
10 4
11 -1
12 -1
13 6
14 -5
15 1
16 4
17 -10
18 6
19 -1
20 1
21 -10
22 15
23 -7
24 1
25 -5
26 20
27 -21
28 8
29 -1
30 -1
31 15
32 -35
33 28
34 -9
35 1
36 6
37 -35
38 56
39 -36
40 10
41 -1
42 1
43 -21
44 70
45 -84
46 45
47 -11
48 1
49 -7
50 56
51 -126
52 120
53 -55
54 12
55 -1
56 -1
57 28
58 -126
59 210
60 -165
61 66
62 -13
63 1
64 8
65 -84
66 252
67 -330
68 220
69 -78
70 14
71 -1
72 1
73 -36
74 210
75 -462
76 495

List of values

[1, -1, -1, 1, 2, -1, 1, -3, 1, -3, 4, -1, -1, 6, -5, 1, 4, -10, 6, -1, 1, -10, 15, -7, 1, -5, 20, -21, 8, -1, -1, 15, -35, 28, -9, 1, 6, -35, 56, -36, 10, -1, 1, -21, 70, -84, 45, -11, 1, -7, 56, -126, 120, -55, 12, -1, -1, 28, -126, 210, -165, 66, -13, 1, 8, -84, 252, -330, 220, -78, 14, -1, 1, -36, 210, -462, 495]