cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092866 Number of intersections inside an equilateral triangular figure formed by the straight line segments mutually connecting all vertices and all points that divide the sides into n equal parts. If three or more lines meet at an interior point this intersection is counted only once.

This page as a plain text file.
%I A092866 #98 Nov 13 2023 11:28:36
%S A092866 0,4,49,166,543,1237,2511,4762,7777,12262,18933,28504,39078,56065,
%T A092866 73879,95962,124653,164761,203259,258646,311233,377932,458793,560755,
%U A092866 648936,775258,908893,1056520,1215087,1428193,1607871,1866007,2111488,2399545,2694010,3040201,3356433,3811387,4253074,4720102,5180466,5806687,6324906,7035949,7690900,8392036,9180330,10136287,10894551,11930833
%N A092866 Number of intersections inside an equilateral triangular figure formed by the straight line segments mutually connecting all vertices and all points that divide the sides into n equal parts. If three or more lines meet at an interior point this intersection is counted only once.
%C A092866 A detailed example for n=5 is given at the Pfoertner link.
%H A092866 Jessica Gonzalez, <a href="/A092866/a092866.png">Illustration of a(4)=166</a>
%H A092866 Hugo Pfoertner, <a href="/A092866/a092866.pdf">Intersections of diagonals in polygons of triangular shape.</a>
%H A092866 Bjorn Poonen and Michael Rubinstein, <a href="http://math.mit.edu/~poonen/papers/ngon.pdf">The number of intersection points made by the diagonals of a regular polygon.</a>
%H A092866 Cynthia Miaina Rasamimanananivo and Max Alekseyev, <a href="/A092866/a092866.py.txt">Sage program for this sequence</a>
%H A092866 Index to OEIS, <a href="/index/Pol#Poonen">Sequences formed by drawing all diagonals in regular polygon</a>
%F A092866 a(n) = A274585(n) - 3n.
%e A092866 a(2)=4 because there are 3 intersection points between the triangle medians and the line segments connecting the midpoints of the sides plus the intersection of the 3 medians at the centroid.
%p A092866 Inter:= proc(p1x,p1y,p2x,p2y,q1x,q1y,q2x,q2y)
%p A092866   local det,x,y;
%p A092866   det:= p1x*q1y-p1x*q2y-p1y*q1x+p1y*q2x-p2x*q1y+p2x*q2y+p2y*q1x-p2y*q2x;
%p A092866   if det = 0 then return NULL fi;
%p A092866   x:= (p1x*p2y*q1x-p1x*p2y*q2x-p1x*q1x*q2y+p1x*q1y*q2x-p1y*p2x*q1x+p1y*p2x*q2x+p2x*q1x*q2y-p2x*q1y*q2x)/det;
%p A092866   y:= (p1x*p2y*q1y-p1x*p2y*q2y-p1y*p2x*q1y+p1y*p2x*q2y-p1y*q1x*q2y+p1y*q1y*q2x+p2y*q1x*q2y-p2y*q1y*q2x)/det;
%p A092866   if x >0 and y > 0 and x + y < 1 then [x,y]
%p A092866   else NULL
%p A092866   fi
%p A092866 end proc:
%p A092866 F:= proc(n) local A,B,C,Pairs,Pts;
%p A092866      A:= [seq([j/n,0],j=0..n)];
%p A092866      B:= [seq([0,j/n],j=0..n)];
%p A092866      C:= [seq([j/n,1-j/n],j=0..n)];
%p A092866      Pairs:= [seq(seq([A[i],B[j]],i=2..n+1),j=2..n+1),
%p A092866               seq(seq([A[i],C[j]],i=1..n),j=1..n),
%p A092866               seq(seq([B[i],C[j]],i=1..n),j=2..n+1)];
%p A092866      Pts:= {seq(seq(Inter(op(Pairs[i][1]),op(Pairs[i][2]),op(Pairs[j][1]),op(Pairs[j][2])),j=1..i-1),i=2..nops(Pairs))};
%p A092866      nops(Pts);
%p A092866 end proc:
%p A092866 map(F, [$1..20]); # _Robert Israel_, Jun 30 2016
%t A092866 Inter[{p1x_, p1y_}, {p2x_, p2y_}, {q1x_, q1y_}, {q2x_, q2y_}] := Module[ {det, x, y}, det = p1x q1y - p1x q2y - p1y q1x + p1y q2x - p2x q1y + p2x q2y + p2y q1x - p2y q2x; If[det == 0, Return[Nothing]]; x = (p1x p2y q1x - p1x p2y q2x - p1x q1x q2y + p1x q1y q2x - p1y p2x q1x + p1y p2x q2x + p2x q1x q2y - p2x q1y q2x)/det; y = (p1x p2y q1y - p1x p2y q2y - p1y p2x q1y + p1y p2x q2y - p1y q1x q2y + p1y q1y q2x + p2y q1x q2y - p2y q1y q2x)/det; If[x > 0 && y > 0 && x + y < 1, {x, y}, Nothing]];
%t A092866 F[n_] := F[n] = Module[{A, B, K, Pairs, Pts}, A = Table[{j/n, 0}, {j, 0, n}]; B = Table[{0, j/n}, {j, 0, n}]; K = Table[{j/n, 1 - j/n}, {j, 0, n}]; Pairs = {Table[Table[{A[[i]], B[[j]]}, {i, 2, n+1}], {j, 2, n+1}], Table[Table[{A[[i]], K[[j]]}, {i, 1, n}], {j, 1, n}], Table[Table[ {B[[i]], K[[j]]}, {i, 1, n}], {j, 2, n+1}]} // Flatten[#, 2]&; Pts = Table[Table[Inter[Pairs[[i, 1]], Pairs[[i, 2]], Pairs[[j, 1]], Pairs[[j, 2]]], {j, 1, i-1}], {i, 2, Length[Pairs]}]; Flatten[Pts, 1] // Union // Length];
%t A092866 Table[Print[n, " ", F[n]]; F[n], {n, 1, 20}] (* _Jean-François Alcover_, Apr 11 2019, after _Robert Israel_ *)
%Y A092866 Cf. A092867 (regions formed by the diagonals), A274585 (points both inside and on the triangle sides), A274586 (edges).
%Y A092866 Cf. A006561 (number of intersections of diagonals of regular n-gon), A091908 (intersections between line segments connecting vertices with subdivision points on opposite side).
%Y A092866 If the boundary points are in general position, we get A367117, A213827, A367118, A367119. - _N. J. A. Sloane_, Nov 09 2023
%K A092866 nonn
%O A092866 1,2
%A A092866 _Hugo Pfoertner_, Mar 10 2004
%E A092866 a(1) = 0 prepended by _Max Alekseyev_, Jun 29 2016
%E A092866 a(4) corrected and a(6)-a(20) added by _Cynthia Miaina Rasamimanananivo_, Jun 28 2016
%E A092866 a(20) corrected by _Robert Israel_, Jun 30 2016
%E A092866 a(21)-a(50) from _Cynthia Miaina Rasamimanananivo_, Jun 30 - Aug 23, 2016
%E A092866 "Equilateral" added to definition by _N. J. A. Sloane_, May 13 2020