cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092867 Number of regions in an equilateral triangular figure formed by the straight line segments connecting all vertices and all points that divide the sides into n equal parts.

This page as a plain text file.
%I A092867 #57 Nov 13 2023 11:27:43
%S A092867 1,12,75,252,715,1572,3109,5676,9291,14556,22081,32502,44935,62868,
%T A092867 83286,108384,140152,181710,225565,282978,342792,415614,502318,606642,
%U A092867 708505,839874,983007,1141416,1315102,1529526,1733476,1994550,2259420,2559990,2878053,3237414,3593521,4047906,4510590,5002350,5506918,6128100,6704800,7414518,8113992,8858622,9682927,10626774,11478142,12519492
%N A092867 Number of regions in an equilateral triangular figure formed by the straight line segments connecting all vertices and all points that divide the sides into n equal parts.
%H A092867 Hugo Pfoertner, <a href="/A092866/a092866.pdf">Intersections of diagonals in polygons of triangular shape.</a>
%H A092867 Cynthia Miaina Rasamimanananivo and Max Alekseyev, <a href="/A092867/a092867.py.txt">Sage program for this sequence</a>
%H A092867 Scott R. Shannon, <a href="/A331911/a331911.png">Triangle regions for n = 2</a>.
%H A092867 Scott R. Shannon, <a href="/A331911/a331911_1.png">Triangle regions for n = 3</a>.
%H A092867 Scott R. Shannon, <a href="/A331911/a331911_13.png">Triangle regions for n = 4</a>.
%H A092867 Scott R. Shannon, <a href="/A331911/a331911_3.png">Triangle regions for n = 5</a>.
%H A092867 Scott R. Shannon, <a href="/A331911/a331911_4.png">Triangle regions for n = 6</a>.
%H A092867 Scott R. Shannon, <a href="/A331911/a331911_5.png">Triangle regions for n = 7</a>.
%H A092867 Scott R. Shannon, <a href="/A331911/a331911_6.png">Triangle regions for n = 8</a>.
%H A092867 Scott R. Shannon, <a href="/A331911/a331911_7.png">Triangle regions for n = 9</a>.
%H A092867 Scott R. Shannon, <a href="/A331911/a331911_8.png">Triangle regions for n = 10</a>.
%H A092867 Scott R. Shannon, <a href="/A331911/a331911_10.png">Triangle regions for n = 11</a>.
%H A092867 Scott R. Shannon, <a href="/A331911/a331911_9.png">Triangle regions for n = 12</a>.
%H A092867 Scott R. Shannon, <a href="/A331911/a331911_11.png">Triangle regions for n = 13</a>.
%H A092867 Scott R. Shannon, <a href="/A331911/a331911_12.png">Triangle regions for n = 14</a>.
%H A092867 Scott R. Shannon, <a href="/A331911/a331911_14.png">Triangle regions for n = 9, random distance-based coloring</a>.
%H A092867 Scott R. Shannon, <a href="/A331911/a331911_15.png">Triangle regions for n = 12, random distance-based coloring</a>
%H A092867 <a href="/index/St#Stained">Index entries for sequences related to stained glass windows</a>
%H A092867 <a href="/index/Pol#Poonen">Sequences formed by drawing all diagonals in regular polygon</a>
%F A092867 By the Euler characteristic, a(n) = A274586(n) - A274585(n) + 1 = A274586(n) - A092866(n) - 3n - 1.
%e A092867 a(2)=12 because the 6 line segments mutually connecting the vertices and the mid-side nodes form 12 congruent right triangles of two different sizes.
%e A092867 a(3)=75: 48 triangles, 24 quadrilaterals and 3 pentagons are formed. See pictures at Pfoertner link.
%Y A092867 Cf. A092866 (number of intersections),  A274585 (number of points both inside and on the triangle sides), A274586 (number of edges), A331911 (number of n-gons).
%Y A092867 Cf. A092098 (regions in triangle cut by line segments connecting vertices with subdivision points on opposite side), A006533 (regions formed by all diagonals in regular n-gon), A002717 (triangles in triangular matchstick arrangement).
%Y A092867 If the boundary points are in general position, we get A367117, A213827, A367118, A367119. - _N. J. A. Sloane_, Nov 09 2023
%K A092867 more,nonn
%O A092867 1,2
%A A092867 _Hugo Pfoertner_, Mar 15 2004
%E A092867 a(1)=1 prepended by _Max Alekseyev_, Jun 29 2016
%E A092867 a(6)-a(50) from _Cynthia Miaina Rasamimanananivo_, Jun 28 2016, Jul 01 2016, Aug 05 2016, Aug 15 2016
%E A092867 Definition edited by _N. J. A. Sloane_, May 13 2020