A092874 Decimal expansion of the "binary" Liouville number.
7, 6, 5, 6, 2, 5, 0, 5, 9, 6, 0, 4, 6, 4, 4, 7, 7, 5, 3, 9, 0, 6, 2, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 5, 2, 3, 1, 6, 3, 8, 4, 5, 2, 6, 2, 6, 4, 0, 0, 5, 0, 9, 9, 9, 9, 1, 3, 8, 3, 8, 2, 2, 2, 3, 7, 2, 3, 3, 8, 0, 3, 9, 4, 5, 9, 5, 6, 3, 3, 4, 1, 3, 6
Offset: 0
Examples
0.7656250596046447753906250000... = 1/2^1 + 1/2^2 + 1/2^6 + 1/2^24 + 1/2^120 + ...
References
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.22, p. 172.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Ferenc Adorján, Binary mapping of monotonic sequences and the Aronson function.
- Burkard Polster, Liouville's number, the easiest transcendental and its clones, Mathologer video (2017).
- Fedoua Sghiouer, Kacem Belhroukia, and Ali Kacha, Transcendence of some infinite series, arXiv preprint (2023). arXiv:2301.06495 [math.NT].
- Index entries for transcendental numbers.
Programs
-
Mathematica
RealDigits[Sum[1/2^(n!), {n, Infinity}], 10, 105][[1]] (* Alonso del Arte, Dec 03 2012 *)
-
PARI
{ mt(v)= /*Returns the binary mapping of v monotonic sequence as a real in (0,1)*/ local(a=0.0,p=1,l);l=matsize(v)[2]; for(i=1,l,a+=2^(-v[i])); return(a)}
-
PARI
suminf(n=2,2^-gamma(n)) \\ Charles R Greathouse IV, Jun 14 2020
Extensions
Offset corrected by Franklin T. Adams-Watters, Dec 14 2017
Comments