cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092879 Triangle of coefficients of the product of two consecutive Fibonacci polynomials.

This page as a plain text file.
%I A092879 #19 Aug 15 2017 03:11:48
%S A092879 1,1,1,1,3,2,1,5,7,2,1,7,16,13,3,1,9,29,40,22,3,1,11,46,91,86,34,4,1,
%T A092879 13,67,174,239,166,50,4,1,15,92,297,541,553,296,70,5,1,17,121,468,
%U A092879 1068,1461,1163,496,95,5,1,19,154,695,1912,3300,3544,2269,791,125,6,1,21,191
%N A092879 Triangle of coefficients of the product of two consecutive Fibonacci polynomials.
%C A092879 The Fibonacci polynomials are defined by F(0,x) = 1, F(1,x) = 1 and F(n, x) = F(n-1, x) + x*F(n-2, x).
%C A092879 This is also the reflected triangle of coefficients of the polynomials defined by the recursion: c0=-1; p(x, n) = (2 + c0 - x)*p(x, n - 1) + (-1 - c0*(2 - x))*p(x, n - 2) + c0*p(x, n - 3). - _Roger L. Bagula_, Apr 09 2008
%F A092879 From _Johannes W. Meijer_, Jul 20 2011: (Start)
%F A092879 T(n, k) = Sum_{i=0..k} (-1)^(i+k)*binomial(i+2*n-2*k+1, i).
%F A092879 T(n, k) = A035317(2*n-k, k) = A158909(n, n-k.) (End)
%F A092879 T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k-1) + T(n-2,k-2) - T(n-3,k-3), T(0,0) = 1, T(n,k) = 0 if k < 0 or if k > n. - _Philippe Deléham_, Nov 12 2013
%e A092879 Triangle begins;
%e A092879   1;
%e A092879   1,1;
%e A092879   1,3,2;
%e A092879   1,5,7,2;
%e A092879   1,7,16,13,3;
%e A092879   1,9,29,40,22,3;
%e A092879   ...
%e A092879 F(3,x) = 1 + 2*x and F(4,x) = 1 + 3*x + x^2 so F(3,x)*F(4,x)=(1 + 3*x + x^2)*(1 + 2*x) = 1 + 5*x + 7*x^2 + 2*x^3 leads to T(3,k) = [1,5,7,2].
%p A092879 T:=proc(n,k): add((-1)^(i+k)*binomial(i+2*n-2*k+1,i), i=0..k) end: seq(seq(T(n,k), k=0..n), n=0..10); # _Johannes W. Meijer_, Jul 20 2011
%p A092879 T:=proc(n,k): coeff(F(n, x)*F(n+1, x), x, k) end: F:=proc(n, x) option remember: if n=0 then 1 elif n=1 then 1 else procname(n-1, x) + x*procname(n-2, x) fi: end: seq(seq(T(n,k), k=0..n), n=0..10); # _Johannes W. Meijer_, Jul 20 2011
%t A092879 c0 = -1; p[x, -1] = 0; p[x, 0] = 1; p[x, 1] = 2 - x + c0; p[x_, n_] :=p[x, n] = (2 + c0 -x)*p[x, n - 1] + (-1 - c0 (2 - x))*p[x, n - 2] + c0*p[x, n - 3]; Table[ExpandAll[p[x, n]], {n, 0, 10}]; a = Table[Reverse[CoefficientList[p[x, n], x]], {n, 0, 10}]; Flatten[a] (* _Roger L. Bagula_, Apr 09 2008 *)
%o A092879 (PARI) T(n,k)=local(m);if(k<0 || k>n,0,n++; m=contfracpnqn(matrix(2,n,i,j,x)); polcoeff(m[1,1]*m[2,1]/x^n,n-k))
%Y A092879 Row sums are A001654(n+1).
%Y A092879 Cf. A109954, A136674.
%K A092879 nonn,tabl
%O A092879 0,5
%A A092879 _Michael Somos_, Mar 10 2004
%E A092879 Edited and information added by _Johannes W. Meijer_, Jul 20 2011