This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A092886 #17 Mar 15 2024 12:50:08 %S A092886 0,1,1,3,6,12,26,53,111,231,480,1000,2080,4329,9009,18747,39014,81188, %T A092886 168954,351597,731679,1522639,3168640,6594000,13722240,28556241, %U A092886 59426081,123666803,257352966,535556412,1114503066,2319302053 %N A092886 Expansion of x/(x^4-x^3-2x^2-x+1). %C A092886 If P(x),Q(x) are n-th and (n-1)-th Fibonacci polynomials, then a(n)=real part of the product of P(I) and conjugate Q(I). %H A092886 <a href="/index/Tu#2wis">Index entries for two-way infinite sequences</a> %H A092886 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,1,-1). %F A092886 G.f.: x/(x^4-x^3-2x^2-x+1). a(n)=a(n-1)+2*a(n-2)+a(n-3)-a(n-4). a(n)=-a(-2-n). %e A092886 Fibonacci polynomials P(5)=1+4x+3x^2, P(4)=1+3x+x^2. Conjugate product evaluated at I is (-2+4I)*(-3I)=12-6I and so a(5)=12. %t A092886 CoefficientList[Series[x/(x^4-x^3-2x^2-x+1),{x,0,40}],x] (* or *) LinearRecurrence[{1,2,1,-1},{0,1,1,3},40] (* _Harvey P. Dale_, Feb 27 2015 *) %o A092886 (PARI) a(n)=local(m);if(n<1,if(n>-3,0,-a(-2-n)),m=contfracpnqn(matrix(2,n,i,j,I));real(m[1,1]*conj(m[2,1]))) %K A092886 nonn,easy %O A092886 0,4 %A A092886 _Michael Somos_, Mar 11 2004