A092900 A Jacobsthal sequence (A078008) to base 4.
1, 0, 2, 2, 12, 22, 112, 222, 1112, 2222, 11112, 22222, 111112, 222222, 1111112, 2222222, 11111112, 22222222, 111111112, 222222222, 1111111112, 2222222222, 11111111112, 22222222222, 111111111112, 222222222222, 1111111111112
Offset: 0
Examples
a(8)= 1112 because A078008(8) = 86 (in base 10) = 64 + 16 + 4 + 2 = 1*(4^3) + 1*(4^2) + 1*(4^1) + 2.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,11,0,-10).
Crossrefs
Cf. A081857.
Programs
-
PARI
Vec((1-9*x^2+2*x^3)/((1-x)*(1+x)*(1-10*x^2)) + O(x^30)) \\ Colin Barker, Apr 01 2016
Formula
For n > 0, a(2*n+1) is represented as a string of n 2's and a(2*n) as a string of (n-1) 1's followed by a 2.
From Colin Barker, Apr 01 2016: (Start)
a(n) = (6+10*(-1)^n+10^(1/2*(-1+n))*(2-2*(-1)^n+sqrt(10)+(-1)^n*sqrt(10)))/18.
a(n) = (10^(n/2)+8)/9 for n even.
a(n) = (2^((n+1)/2)*5^((n-1)/2)-2)/9 for n odd.
a(n) = 11*a(n-2)-10*a(n-4) for n>3.
G.f.: (1-9*x^2+2*x^3) / ((1-x)*(1+x)*(1-10*x^2)).
(End)