cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092900 A Jacobsthal sequence (A078008) to base 4.

Original entry on oeis.org

1, 0, 2, 2, 12, 22, 112, 222, 1112, 2222, 11112, 22222, 111112, 222222, 1111112, 2222222, 11111112, 22222222, 111111112, 222222222, 1111111112, 2222222222, 11111111112, 22222222222, 111111111112, 222222222222, 1111111111112
Offset: 0

Views

Author

Paul Barry, Mar 12 2004

Keywords

Examples

			a(8)= 1112 because A078008(8) = 86 (in base 10) = 64 + 16 + 4 + 2 = 1*(4^3) + 1*(4^2) + 1*(4^1) + 2.
		

Crossrefs

Cf. A081857.

Programs

  • PARI
    Vec((1-9*x^2+2*x^3)/((1-x)*(1+x)*(1-10*x^2)) + O(x^30)) \\ Colin Barker, Apr 01 2016

Formula

For n > 0, a(2*n+1) is represented as a string of n 2's and a(2*n) as a string of (n-1) 1's followed by a 2.
From Colin Barker, Apr 01 2016: (Start)
a(n) = (6+10*(-1)^n+10^(1/2*(-1+n))*(2-2*(-1)^n+sqrt(10)+(-1)^n*sqrt(10)))/18.
a(n) = (10^(n/2)+8)/9 for n even.
a(n) = (2^((n+1)/2)*5^((n-1)/2)-2)/9 for n odd.
a(n) = 11*a(n-2)-10*a(n-4) for n>3.
G.f.: (1-9*x^2+2*x^3) / ((1-x)*(1+x)*(1-10*x^2)).
(End)