This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A092912 #19 Nov 22 2020 03:07:17 %S A092912 1,11,13,17,19,31,41,61,71,101,103,107,109,113,121,125,127,131,137, %T A092912 139,143,149,151,157,163,167,173,179,181,187,191,193,197,199,211,241, %U A092912 251,271,281,311,313,317,331,341,401,419,421,431,451,461,491,521,541,571 %N A092912 Numbers k all of whose divisors contain only digits that occur at least once in k. %C A092912 All primes containing the digit 1 are terms. %H A092912 Amiram Eldar, <a href="/A092912/b092912.txt">Table of n, a(n) for n = 1..10000</a> %e A092912 131 is a term. 143 is also a term with divisors 1,11,13,143. %p A092912 isA092912 := proc(n) local digs, divs, d,i,j ; digs := convert(n,base,10) ; divs := numtheory[divisors](n) ; for i from 1 to nops(divs) do d := convert(op(i,divs),base,10) ; for j in d do if not j in digs then RETURN(false) ; fi ; od ; od ; RETURN(true) ; end: for n from 1 to 700 do if isA092912(n) then printf("%d, ",n) ; fi ; od ; # _R. J. Mathar_, Jul 26 2007 %t A092912 Do[a = IntegerDigits[n]; b = Union @@ IntegerDigits[Divisors[n]]; If[Intersection[a, b] == b, Print[n]], {n, 1, 200}] (* _Ryan Propper_, Jul 19 2005 *) %o A092912 (PARI) is_A092912(n)=!setminus(Set(concat(apply(digits,divisors(n)))),Set(digits(n))) \\ _M. F. Hasler_, Mar 09 2014 %Y A092912 Cf. A062634, A092911. %K A092912 base,nonn %O A092912 1,2 %A A092912 _Amarnath Murthy_, Mar 14 2004 %E A092912 Corrected and extended by _Ryan Propper_, Jul 19 2005 %E A092912 More terms from _R. J. Mathar_, Jul 26 2007