A092972 Row 7 of array in A288580.
1, 1, 2, 3, -12, -10, -6, -49, -48, -90, -120, 1320, 1080, 624, 9604, 9360, 17280, 22440, -403920, -328320, -187200, -4235364, -4118400, -7551360, -9694080, 242352000, 196335360, 111196800, 3320525376, 3224707200, 5890060800, 7512912000, -240413184000, -194372006400, -109640044800
Offset: 0
Keywords
References
- F. Smarandache, Back and Forth Factorials, Arizona State Univ., Special Collections, 1972.
Links
- J. Dezert, ed., Smarandacheials (1), Mathematics Magazine for Grades 1-12, No. 4, 2004.
- J. Dezert, ed., Smarandacheials (2), Mathematics Magazine for Grades 1-12, No. 4, 2004.
Programs
-
Maple
T:=proc(n,k) local i,p; p:=1; for i from 0 to floor(2*n/k) do if n-k*i <> 0 then p:=p*(n-k*i) fi; od: p; end; r:=k->[seq(T(n,k), n=0..60)]; r(7); # N. J. A. Sloane, Jul 03 2017
-
PARI
a(n,k)=prod(j=0,(2*n)\k,if(n-k*j==0,1,n-k*j))
Formula
a(n, k) = !n!k = Prod{i=0, 1, 2, .., floor(2n/k)}_{0<|n-i*k|<=n} (n-i*k) = n(n-k)(n-2k)(n-3k)... . k=7.
Extensions
Entry revised by N. J. A. Sloane, Jul 03 2017