This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A092976 #32 Jul 04 2025 21:49:15 %S A092976 1,1,2,2,3,2,7,2,5,4,10,2,19,2,13,13,9,2,37,2,29,17,19,2,61,6,22,10, %T A092976 39,2,247,2,17,25,28,25,127,2,31,29,97,2,450,2,59,82,37,2,217,8,146, %U A092976 37,69,2,271,37,133,41,46,2,1558,2,49,112,33,43,1038,2,89,49,1105,2,469,2,58,211,99,49,1423,2,353 %N A092976 Consider all partitions of n into parts all of which are divisors of n; a(n) = number of distinct values taken by the product of the parts. %C A092976 a(n) > tau(n) + A(n) + R(n), where tau(n) = number of divisors of n, A(n) = product of powers of nontrivial divisors whose sum with multiplicity is < n and R(n) = numbers of the form r^(k) > n where r is a divisor of n and k <= n/r. %H A092976 Alois P. Heinz, <a href="/A092976/b092976.txt">Table of n, a(n) for n = 0..10000</a> %F A092976 a(n) = 2 <=> n in { A000040 }. - _Alois P. Heinz_, Oct 28 2021 %e A092976 a(10) = 10, the numbers arising are 1,2,4,5,8,10,16,20,25 and 32; e.g. 25 = 5*5, 8 = 2*2*2*1*1*1*1, 32 = 2*2*2*2*2, etc. %p A092976 with(numtheory): %p A092976 a:= proc(n) local b, l, s; %p A092976 l:= sort([divisors(n)[]]); %p A092976 b:= proc(n,i,p) %p A092976 if n<0 then %p A092976 elif n=0 then s:= s union {p} %p A092976 elif i=0 then %p A092976 else b(n-l[i], i, p*l[i]); b(n, i-1, p) %p A092976 fi %p A092976 end; %p A092976 s:= {}; %p A092976 b(n, nops(l), 1); %p A092976 nops(s) %p A092976 end: %p A092976 seq(a(n), n=0..60); # _Alois P. Heinz_, Feb 21 2011 %t A092976 a[n_] := Module[{ b, l, s}, l = Divisors[n]; b[m_, i_, p_] := Which[m<0, , m == 0, s = Union[s, {p}], i == 0, , True, b[m - l[[i]], i, p*l[[i]]]; b[m, i-1, p]]; s = {}; b[n, Length[l], 1]; Length[s]]; Table[a[n], {n, 1, 60}] (* _Jean-François Alcover_, Nov 11 2015, after _Alois P. Heinz_ *) %Y A092976 Cf. A000040, A092975. %K A092976 nonn %O A092976 0,3 %A A092976 _Amarnath Murthy_, Mar 27 2004 %E A092976 More terms from _Vladeta Jovovic_, Aug 06 2005 %E A092976 More terms from _Alois P. Heinz_, Feb 21 2011 %E A092976 a(0)=1 prepended by _Alois P. Heinz_, Oct 28 2021